
Assembly Voting X

The election system was designed with a 

focus on security and veri昀椀ability. All cryp-

tographic algorithms are inspired from 
academic papers carefully bonded togeth-

er to form our protocol. Citations to aca-

demic articles are provided for an in-depth 
understanding of the algorithms. 

The design of the system is modular, that 

makes it very easy to con昀椀gure in order to 
reach the desired properties of your elec-

tion. Also, in case an updated algorithm is 
developed, it is very easy to replace a par-
ticular module with an updated version.
 

The current document is structured in the 

following way. First, we describe the func-

tionality of each component that makes 
up the election system. Next, we present 
the election process including all di昀昀er-
ent phases and di昀昀erent roles that are 
involved in the process. In the third chap-

ter, we state what security properties the 
system achieves. We explain how these 
properties are achieved and what compo-

nents are responsible for each property. 

In conclusion, we present a table that 
compares Assembly Voting X to some ex-

isting solutions from the market. The table 
also contains a comparison to the current 
postal voting system. 

We are using a fast and secure cryptosys-

tem based on elliptic curve cryptography. 
Particularly, we are using a highly secure 

and documented elliptic curve, called 
secp256k1, also used in the Bitcoin trans-

action system. Our encryption mechanism 
is based on the very popular algorithm 
called ElGamal encryption scheme that 
entails the use of a private-public key in-

frastructure. 

All voter choices are encrypted and sent 
over the network to the election server 

with no possibility of eavesdropping. We 
will refer to an encryption of a choice as a 
ballot. 

With this con昀椀guration, the vote that 
needs to be encrypted can be approx-

imately 30 bytes in size. This would be 
enough for a referendum, a simple elec-

tion, a multiple-choice election with max-

imum 30 choices, an STV election with 
maximum 15 choices or a write-in vote 
with maximum 30 characters. If more data 
is required, the ballot can be con昀椀gured to 
encode multiple cryptograms. We will try, 
as much as possible, to con昀椀gure every 
election to 昀椀t in a simple ballot of one 
cryptogram. 

Cryptographic components 
Cryptosystem



To defend against a single point of failure, the private key of the election is split into 
several parts, each in possession of di昀昀erent people of the election committee, which we 
will refer to as trustees. In order to decrypt the result of the election, a certain threshold 
of trustees have to participate, otherwise decryption is not possible. This brings us two 
bene昀椀ts: 

The election system uses an “e-out-of-n” 

threshold decryption system presented 
in the academic paper “A Threshold Cryp-

tosystem without a Trusted Party” written 

by professor Torben Pryds Pedersen at 
the Aarhus University in Denmark [1]. The 
paper is based on other academic articles 
that explain the mathematical principles 
of the threshold cryptosystem [2] [3]. The 
system needs at least e trustees to collab-

orate out of all n in order to decrypt the 
results (e.g. 3 out of 5 trustees). Parame-

ters are fully con昀椀gurable, but it is recom-

mended that the threshold is at least half 

of the total number of trustees. 

Before election starts, all trustees have to 
participate in a threshold ceremony where 

they exchange cryptographic data used for 
generating the election public key. During 
this process, each of them computes their 
own share of the private key, that must be 
used to decrypt the result of the election. 
All actions taken by trustees come with 
proofs and can be publicly veri昀椀ed that are 
correctly computed. 

Note that during this ceremony, nobody 
is able to compute the entire main private 
key associated with the election public key. 
This means that nobody has the power 
to decrypt results alone. All mathematical 
procedures that trustees have to follow 
are described in the academic paper. 
An overview of the threshold ceremony 
can be seen in the picture below. 

In case of a trustee loses her share of 

the private key, the results could still 

be decrypted as long as the threshold 

of trustees can be met.

In case of a corrupt trustee, results 

cannot be manipulated as long as a 

threshold of trustees are honest.

Threshold decryption



All trustees have to securely store their 
share of the private key until results can 
be decrypted. 

During the decryption phase, trustees 
have to compute a partial decryption of 
the entire ballot board using their share 
of the private key and generate a proof of 
correct computation. Each trustee pub-

lishes her partial decryption and proof to 
the election server, which will accept it if 
the proof validates. Note that the valida-

tion is publicly accessible. 

The proof of a partial decryption consists 
of a list of Discrete Logarithm Equality 
Zero-Knowledge Proofs, one for each 

cryptogram from the ballot board. An opti-
mization of this has been implemented as 
described in the paper “Zero-Knowledge 

Argument for Simultaneous Discrete Loga-

rithms” published by professor Shermann 
Chow et al. at the Courant Institute of 
Mathematical Science New York University 
in USA [4]. 

When enough partial decryptions have 
been received (threshold limit was 
reached), the election server can aggre-

gate all partial decryptions in order to ex-

tract the results of the election. Again, the 
mathematical procedures are explained in 
the academic paper [1]. 
The overview of the threshold decryption 
can be seen in the diagram below. 



Voter Credentials distribution

Digital Signature

Vote Con昀椀rmation

Voters receive their credentials via one or multiple 
channels from di昀昀erent Credential Authorities that 
work independently from our system. Each Cre-

dential Authority should use a distinct communi-
cation channel for distributing credentials (sending 
letters, e-mail, SMS).  

Voter credentials are generated randomly as a 
private-public key. The voter receives the private 
key which will be used as a signing key, while our 
server receives the associated public key, which 
will be used as a signature veri昀椀cation key. It is very 
important that our server does never come into 
possession of voters’ signing keys because it must 
not be able to replicate a voter’s digital signature. 

When authenticating to the election system, a 
voter has to input all credentials received from all 
Credential Authorities. 

In case there is only one Credential Authority, it is 
obvious that it knows all credentials of all voters 
and it might, potentially, launch a large-scale attack 
impersonating every voter. To avoid such a single 
point of failure scenario, we recommend having 
multiple Credential Authorities to generate voter 
credentials, using distinct communication channels 

for distributing them. In this case, a large-scale 
attack is infeasible as long as there is at least one 
honest Credential Authority. 

To preserve the integrity of a vote, each crypto-

gram is accompanied by a digital signature that 
certi昀椀es that the value of the cryptogram is genu-

ine and can never be modi昀椀ed. Moreover, a digital 
signature certi昀椀es the correlation between a voter 
and her ballot. 

A digital signature is generated using the Schnorr 
Signature Algorithm described in the academic 
paper “E昀케cient identi昀椀cation and signatures for 

smart cards” written by professor Claus-Peter 
Schnorr [5]. Voter’s credentials are used as signing 
key in the signing algorithm.  

Once the cryptogram is published next to its 
signature, it is impossible to change the value of 
the cryptogram because doing so will invalidate 
the signature, thus mitigating the possibility of a 
misbehaving server. 

After the voter submits her vote (in form of a cryp-

togram), the server will send back a con昀椀rmation 
(receipt) that her vote has been received in form 
of a signature on the vote information. One might 
say it is similar to the Digital Signature protocol, but 
this time it is the server who signs and con昀椀rms 
the arrival of the vote. 

The voter will have the option of saving the receipt 
on a personal computer. Based on it, the voter will 
be able to check that her vote is included in the 
public bulletin board. 

Please note that, this receipt proves only the fact 
that the voter has voted. It does not prove the way 
she voted. Thus, the vote con昀椀rmation protocol 
does not violate the receipt-free property of the 
election that says that the voter should not be able 
to prove to a third party the way she voted.



Public Bulletin Board

Encryption Protocol

During the voting phase, all ballots are published 
on an append-only list, called the public bulletin 
board. All voters have access to this list in order to 
verify that their ballot has been registered as cast. 

When a new ballot arrives on the bulletin board, 
a new hash value is associated to the new state 

of the board. The value is computed by applying a 
hash function on the information of the new ballot 
appended to the hash value of the previous state 
(before the new ballot was registered). 

Each voter has the possibility of validating whether 
her vote is included on the board or not, using her 

vote con昀椀rmation received from the server. The 
system will point the voter to her particular vote 
from the board and she can validate that no data 
has been tampered with. Note that during this 
process, the voter validates both that her vote is 
included and that the integrity of the entire board 
has been maintained. 

In case the hash value of the vote con昀椀rmation 
does not match the hash value of the vote from 

the bulletin board, it represents an attack to the 
integrity of the bulletin board (a vote has been 
removed or replaced). Thus, an inside attack to the 
integrity of the board can be easily intercepted. 

Instead of the voter encrypting her vote by herself, 
we propose a scheme where the voter and the 
election server collaborate in order to generate a 
cryptogram. The process starts by the server deliv-

ering an empty cryptogram to the voter. The latter 
will encrypt her vote on top of the empty crypto-

gram received. In this context, the randomness 
used in the generation of the 昀椀nal cryptogram, is 
shared between the voter and the election server 
with no single party knowing the entire value. 

The empty cryptogram sent by the server has to 
be accompanied by an Interactive Zero-Knowledge 
Proof of Discrete Logarithm Equality to con昀椀rm 
that the cryptogram is indeed empty. The reason 
it needs to be interactive is that the proof (that the 
initial cryptogram was empty) needs to convince 
the voter only, therefore it needs to not be uni-
versally valid. Together with the encryption of her 
vote, the voter also sends a Zero-Knowledge proof 
that the empty cryptogram was used in the encryp-

tion process.  

If the voter tries to convince a third party about 
the way she voted, she can prove her vote based 
on the initial cryptogram received, but she cannot 
prove that cryptogram empty. Hence, the protocol 
is receipt-free. 

By default, the voting application will hide the 
randomness used in the encryption so a regular 
voter cannot prove the way she voted. Neverthe-

less, a malicious voter with enough hacking skills 

could trick the voting application into revealing this 
sensitive information.  

Though, by following our encryption protocol, a 
malicious voter could still not prove the way he vot-
ed because part of the encryption was generated 
on the election server. Our system is receipt-free 
as long as the attacker is not in control of both the 
voting application and the election server.



Mixnet

To preserve anonymity, the link between a voter 
identity and his ballot has to be broken. In our 
election system, we achieve that by passing the 
entire ballot board though a mixnet, formed of sev-

eral mix nodes. Each mix node applies a re-encryp-

tion algorithm on each cryptogram from the board 
and shu昀툀es them in a new random order to form 
the new version of the ballot board. In addition, a 
proof of Correct Shu昀툀e is generated to validate 
the correct re-encryptions of the original ballots. 

The proof has been inspired from the academic 
paper called “An E昀케cient Scheme for Proving a 
Shu昀툀e” published by researcher Jun Furukawa 
from Internet Systems Research Laboratories at 
NEC Corporation, Kawasaki Japan [6]. The paper 
has been reviewed and updated many times over 
the years in di昀昀erent articles [7] [8]. All cryp-

tographic procedures involved in the generation 
and veri昀椀cation of the proof are described in the 
paper. 

Mix nodes apply their mixing procedure in sequen-

tial order, meaning that each mix node mixes the 
ballot board that the previous mix node has out-
putted. The 昀椀rst mix node mixes the initial, original 
ballot board. The 昀椀nal version of the ballot board is 
the one that the last mix node computes. 
In case one proof of shu昀툀e is invalid, that mix 
node is removed and the process resumes from 
the previous valid result. 

All mix nodes are responsible for safely storing 
their mixing parameters used in the generation 
of the board. In case of a corrupt mix node that 
publishes his mixing parameters, our system still 
preserves anonymity as long as there exists at least 
one honest mix node. 

An overview of the mixing process can be seen in 
the picture below. 



Spoiling Ballot feature

Election Process

After encrypting her vote (generating her ballot), 
the voter has the choice either to commit to her 

ballot and register it on the ballot board or to chal-
lenge the encryption mechanism and verify what 
the ballot actually encrypts (spoil the ballot).  

If spoiling ballot, it will be printed on the screen 
both the ballot and the randomness used to en-

crypt the ballot (QR code format). The voter uses a 
second device to scan these values and to decrypt 
the content of the ballot. If the content of the ballot 
does not correspond with her choice, her voting 
device might be compromised, as an attacker 
might trick the voting application to encrypt di昀昀er-
ent values. Otherwise, the voter gains con昀椀dence 
that the voting device outputs genuine ballots. 

The second device, used for veri昀椀cation, can be 
a mobile phone with an app installed that is able 
to perform basic cryptographic operations. This 
device might be completely o昀昀-line for the voter 

to gain con昀椀dence that it is not manipulated by an 
attacker. 

Because it has been decrypted, the spoiled ballot 
cannot be used anymore so the voter has to re-
vote. This process can be repeated as many times 
as needed, until the voter gains enough con昀椀dence 
in her voting device. 

If committing to ballot, the election system will 
register it on the ballot board and the voting appli-
cation will erase the random number used in the 
encryption. The voting process is 昀椀nished. 

One might say that a malware can be programmed 
to interfere with the voting application only on its 
second or third try, but there is no certainty on 
how many times each voter may try to spoil her 
ballot. This way, we argue that an attack to the vot-
ing devise will get caught with high probability.  

The overview of the entire election process is available in the diagram below. Descriptions for each step 
follow afterwards. 



Pre-election phase:

Voting phase:

The election system has to be provided with a list of eligible voters. Each voter must have valid contact in-

formation for each communication channel of the Credential Authorities. The election administrator is fully 
responsible for providing an accurate voter list and valid contact addresses.

The Credential Authorities generate voter credentials and distribute them over particular communication 
channels. They also submit voters signature veri昀椀cation keys to the election system.

The election trustees have to participate in the threshold ceremony in order to generate the election en-

cryption key. Each trustee is responsible for securely storing their share of the election decryption key.

The voter has to login to the system, using credentials received by email.

The voter selects her choice of candidate and con昀椀rms it.

The voter is presented with her encrypted ballot in a readable form (Hex / Base64 string or QR code). This 
should be written down (or saved) for further veri昀椀cation.

If spoiling ballot feature enabled:

The voter generates a digital signature on her ballot.

The voter submits her encrypted ballot and the signature to the central server.

The voter receives and saves the con昀椀rmation that her vote has been registered.

The voter can check the public bulletin board that it contains her encrypted ballot (by typing the value of 
the encrypted ballot or by uploading the con昀椀rmation receipt). This way, the voter gains con昀椀dence that her 
vote is registered as cast.

The voter is able to register more ballots, during the voting process, out of which only the last one will 
count. The previous ballots become overwritten.

The voter has the option to verify that the encrypted ballot contains the actual selected choice.

The voter will be presented with her ballot in encrypted form (as a QR code) and the random number 

used in the encryption process (a second QR code). The voter has to scan both QR codes with a second 

device (a mobile phone), that will perform the decryption of the ballot, revealing voter’s choice. The sec-

ond device can run o昀툀ine so it cannot be interfered by an attacker.

This process will invalidate the ballot, as it was decrypted, and the voter will be asked to vote again.

The voter can repeat this process as many times as needed until she gains con昀椀dence that her choice is 

encrypted correctly (the vote is cast as intended).

In case the ballot decrypts to a di昀昀erent value than expected, this shows a sign of attack to the client 

application.

The overview picture of the voting process is available below. 



After voting: 

Results:

All the invalid and overwritten ballots are removed, and the bulletin board is sealed. This contains all votes 
that should be counted.

Mixing phase

Decryption phase

After the raw result has been published (list of all votes), the 昀椀nal result has to be computed, according to 
the election type (referendum, simple election or STV), and the winner has to be announced.

The bulletin board passes through the mixing phase that will shu昀툀e the order of the ballots in an 

indistinguishable way. The entire mixing phase is split amongst multiple mix nodes that apply their 

shu昀툀e sequentially. Each mix node provides a mathematical proof that certi昀椀es that no content of 

that ballots has been tampered with.

Any observer is able to verify these proofs and gain con昀椀dence that no content of the bulletin board 

was altered in the mixing process.

After mixing phase, the piece of information regarding the connection between an identity and its 

ballot is shared amongst all mix nodes. They are responsible for securely storing their shu昀툀e 

con昀椀guration.

The ballot board outputted by the last mix node is the ballot board version to be decrypted.

A threshold of trustees has to participate in the decryption phase. Each of them is computing a par-

tial decryption of the bulletin board together with a mathematical proof of correct computation.

All partial decryptions together with their proofs are made public so any observer is able to verify the 

correctness of the process.

When enough partial decryptions have been submitted, the content of the ballots can be extracted 

from the bulletin board by aggregating all partial decryptions. This aggregation process is publicly 

computable, thus accessible to an observer.



The voter can see and save the encrypted 
ballot generated on her computer. If the 
ballot is registered, the voter is given a re-

ceipt that con昀椀rms that her vote has been 
received. She can, further on, check that it 
was correctly registered on the server by 
verifying that her encrypted ballot exists 
on the bulletin board.  

If spoiling ballot feature enabled, the voter 
can check that her client application be-

haves correctly. After the voter selected 
her choice and the encrypted ballot has 
been generated, the voter is given the op-

tion to register the ballot or to spoil it. 

If spoilt, the client application will show on 
the screen both the ballot and the ran-

dom number used in its encryption. The 

voter can use a second device to decrypt 
the content of the ballot and verify that it 
corresponds to her choice. Having been 
decrypted, the ballot cannot be used 
anymore, so the voter has to cast another 

vote. 

Each voter is recommended to use this 

feature, at least once, as a veri昀椀cation 
mechanism of their own system (comput-
er). 

There is no universal veri昀椀able mechanism 
to check that all encrypted ballots pub-

lished on the bulletin board have not been 
spoiled before. The server has to be trust-
worthy of correctly handling of encrypted 
ballots. 

During the voting phase, observers con-

stantly monitor the content of the public 
bulletin board. At the end of the voting 
phase, all observers have to con昀椀rm the 
integrity of the board before it can move 
further to mixing phase. 

After the ballot board has been cleaned 
and sealed (end of voting phase), all cryp-

tographic operations applied on the set of 
ballots are publicly veri昀椀able. Both mixing 
proofs and decryption proofs are pub-

lished, and observers are allowed to verify.
 

While the individual veri昀椀ability is optional, 
the universal veri昀椀ability is mandatory. All 
mixing and decryption proofs have to be 
validated by the server to be included in 
the process.  

During the mixing phase, validation of 
a proof is needed after each mix node 
before the process can continue with the 
next mix node. On the other hand, in the 
decryption phase, all partial decryption 
proofs can be checked at the same time, 
so all trustees can perform the decryption 
process simultaneously. 

Proporties

Individual Veri昀椀ability

Universal Veri昀椀ability



Eligibility Veri昀椀ability

Vote Secrecy

Anonymity

Analytics and Auditing

Tamper Detection

Each ballot that arrives at the server is accompa-

nied by a digital signature generated by its voter. 
All ballots are published on the public bulletin 
board together with their signatures. Any observer 
will be able to validate any digital signature associ-
ated to an eligible voter identity. 

Moreover, each valid digital signature certi昀椀es the 
integrity of the vote because any tampering with a 
vote on the bulletin board will result in invalidating 
its digital signature. 

The secrecy of the ballots is enforced by ElGamal 
encryption. The threshold decryption scheme pre-

vents anybody from reading a partial result before 
the decryption phase. Note that even the election 
server is not able to compute any results ahead of 
time. 

On the other hand, the voting device learns the 
voter’s choice. It is voter’s responsibility to have 
a clean and secure environment with respect to 
malware, key loggers etc.  

Anonymity is provided by breaking the connection 
between a voter and her vote. This connection, as 
a piece of information, is split during the mixing 
phase into several pieces, one for each mix node. 
If all mix nodes put their pieces together, 

the connection between all voters and their votes 
can be reconstructed, but as long as at least one 
mix node keeps his piece of information secret, the 
anonymity of the ballot board is preserved.  

All kinds of analytics can be performed as the bal-
lot board is publicly available. 

On the other hand, auditing particular ballots 
works exactly against the anonymity property of 

our election system. In principle, auditing can be 
performed but it requires cooperation of all mix 
nodes. This process should be allowed only to 
certi昀椀ed scrutineers. 

Tamper detection happens on two levels: 

Server side: Because of voters constantly checking their vote con昀椀rmations, tampering 

(deleting or modifying) with the ballot board is immediately detectable.

Voter side: Tampering with the voting application is detectable through ballot spoiling process.



Coercion resistance

Receipt freeness

The election system provides coercion resistance 
to a certain extent. If the receipt-free feature is 
enabled, a voter is not able to provide evidence on 
the way she voted to a third party e.g. a coercer. 
Vote copying is mitigated as well because the voter 

is not performing the encryption of her choice by 
herself (election server is involved in the encryption 
process). 

Our system is coercion resistant as long as: 

Following our encryption protocol, the voter can-

not prove to a third party what the content of her 
ballot is. Because the election server participates 

in the encryption process (by submitting an empty 
cryptogram), the voter has to output the following 
proofs for convincing a third party about her vote: 

The 昀椀rst one is trivial. The second one is impossible 
because the voter is able to fabricate a di昀昀erent 
valid proof based on any values. 

This means that a voter is able to lie about her vote 
by generating a valid proof for claiming that. This 
makes her proof 

The coercer does not sit next to the voter and see the voting process

The coercer does not control the election server

Proof of her encryption

Proof that initial cryptogram received from server is empty



Provides means to

collect and maintain 

accurate registered 

voterslist, and means to

ensure equivalence with

actual voters

No, such a list must 
be provided as in-

put to the system. 
and scrutineer 

must ensure actual

voters correspond
to the list.

No, ditto. No, ditto. No, ditto. No, ditto. No, ditto. 

Provides secure

means to authenticate

voters

Yes, assuming
that the postal
system can be
relied on.

Yes, code
numbers
received

through the 

post (or email).

Yes, user
name and

password
received

through

email.

Yes, by
government-

issued smart

card.

Yes, code
numbers on
Voting Cards
received

through the

post.

Yes, election codes
received by email 
or post.

Provides detectability 
of attacks to server

Not applicable.
There is no online

server.

No. Has strong
veri昀椀ability
properties.. 

Has weak
veri昀椀ability
properties.

Has strong
veri昀椀ability
properties.

Yes,
- by constantly 
checking the consistency 

of the public board
- by the voter checking
that her vote was

registered as cast.

Provides detectability 
of attacks to client

(voting application)

Not applicable.
There is no voting

client.

No. Yes, by involving
two di昀昀erent
client platforms.

Yes, by involving
two di昀昀erent
client platforms.

Yes,
by exchanging
codes as part
of the vote

casting process.

Yes,
through spoiling 
ballot feature
(involves a second 

client platform).

Allows analytics Yes. Yes. No. Could
possibly be
extended to
allow.

Unknown.
Probably not,
but could
possibly be
extended to
allow.

Unknown.
Probably not,
but could
possibly be
extended to
allow.

Yes,
needs mix nodes
cooperation.

Provides veri昀椀ability
(reducing dependence 
on scrutineer)

No. No. IV + UV 
(but not EV).

IV only. IV + UV 
(but not EV).

- IV (verifying registered as 
cast and possibly, cast as 
intended).
- UV (verifying mixing
proofs and decryption
proofs).
- EV (by digital signature
infrastructure).

Provides ballot secrecy 
from third party

Yes, but weak
(relies on secrecy

of post).

Yes. Yes. Yes. Yes. Yes, 
by Elgamal 
encryption.

Provides incoercibility 
from third party attacker

No. No. No. Yes, by 
re-voting. 

No. Yes, to some extent,
In terms of receipt-free.

No, as long as the coercer 
sits next to the voter and 
sees the voting process.

Provides incoercibility
from attacker that

controls election system

No. No. No. No. No. No.

Property Postal voting

(current system)

Building 

society

Hellos Estonian 

system

CH Vote Assembly Voting X



Bibliography

[1] T. P. Pedersen, A Threshold Cryptosystem without a Trusted Party, Aarhus: EUROCRYPT ‘91.

[2] Y. Desmedt and Y. Frankel, Threshold cryptosystem, Milwaukee: EE & CS Department University of Wis-

counsin-Milwaukee, 1990.

[3] A. Shamir, How to Share a Secret, Massachusetts Institute of Technology, 1979.

[4] S. Chow, C. Ma and J. Weng, Zero-Knowledge Argument for Simultaneous Discrete Logarithms, New York: 
COCOON 2010.

[5] C.-P. Schnorr, E昀케cient identi昀椀cation and signatures for smart cards, New York: CRYPTO 89, 1989.

[6] J. Furukawa and K. Sako, An E昀케cient Scheme for Proving a Shu昀툀e, Kawasaki: Crypto 2001.

[7] J. Furukawa, H. Miyauchi, K. Mori, S. Obana and K. Sako, An Implementation oa a Universally Veri昀椀able 
Electronic Voting Scheme Based on Shu昀툀ing, Kawasaki: Internet Systems Research Laboratories, NEC Cor-
poration, 2002.

[8] J. Furukawa, E昀케cient, Veri昀椀able Shu昀툀e Decryption and Its Requirements of Unlinkability, Kawasaki: NEC 
Corporation, 2004.

Assembly Voting ApS | Ringager 4C | 2605 Brøndby | Denmark | cvr. 25600665
Tel: +45 2616 9638 | info@aion.dk | www.assemblyvoting.com


