
Assembly Voting X
Stefan Patachi  -  September 2019

Contents 

1 Introduction ...........................................................................................   4

2 Theoretical Background ...................................................................   4
2.1 Mathematics ...............................................................................   4

2.1.1 Group  ..........................................................................   4
2.1.2 Finite Field  ...................................................................   4
2.1.3 Elliptic Curve over a Prime Field .................................   5
2.1.4 Elliptic Curve Discrete Logarithm Problem ................   6
2.1.5 Elliptic Curve Point Encoding ......................................   6
2.1.6 Mapping a message on the Elliptic Curve ..................   6

2.2 Zero Knowledge Proofs  .............................................................   8
2.2.1 Discrete Logarithm Proof ............................................   8
2.2.2 Discrete Logarithm Equality Proof ............................   10	

2.2.3 Proof for Multiple Discrete Logarithms .................................   12
2.3 Hash Functions ..........................................................................   13

2.4 Elgamal Cryptosystem ............................................................... 14
2.4.1 Proving the Content of a Cryptosystem ....................  15
2.4.2 Homomorphic Encryption ..........................................  16
2.4.3 Elgamal Threshold Cryptosystem ..............................  17

2.5 Schnorr Digital Signature  .........................................................  20
2.6 Furukawa’s Proof of Shuffle  ..................................................... 21

3 Election Protocol .................................................................................. 28
3.1 Involved Parties .......................................................................... 28
3.2 Pre-election Phase ...................................................................... 29

3.2.1 Voter Credential Distribution Process .......................  30
3.2.2 Mapping Vote Options on the Elliptic Curve .............  30

3.3 Election Phase  ............................................................................ 31
3.3.1 Voting Procedure ......................................................... 31
3.3.2 Vote cryptogram generation process ........................  33
3.3.3 Challenging a vote cryptogram  .................................  35
3.3.4 Lying about your vote .................................................  36
3.3.5 Append-only Bulletin Board .......................................  37
3.3.6 System events .............................................................  38
3.3.7 Vote Confirmation Receipt  ........................................  39

3.4 Post-election Phase  ..................................................................  40
3.4.1 Cleansing Procedure ...................................................  40
3.4.2 Mixing Phase ................................................................  40
3.4.3 Decryption Phase  .......................................................  41
3.4.4 Result Publication ........................................................  43



4 Auditing process ...................................................................................  44
4.1 Individual verification mechanisms .........................................  44

4.1.1 Vote is cast as intented ...............................................  44
4.1.2 Vote is registered as cast ............................................  45

4.2 Public auditing process ..............................................................  45
4.2.1 Eligibility verifiability ....................................................  46
4.2.2 Integrity of the bulletin board ....................................  46
4.2.3 Verification of the cleansing procedure .....................  46
4.2.4 Verification of mixing procedure ................................  47
4.2.5 Verification of the decryption  ....................................  47

5 Election properties ..............................................................................  48
5.1 Mobility ........................................................................................  48
5.2 Eligibility  ......................................................................................  48
5.3 Privacy ..........................................................................................  49
5.4 Anonymity	...................................................................................  49
5.5 Integrity .......................................................................................  50
5.6 Verifiability ..................................................................................  50
5.7 Receipt-freeness .........................................................................  51

A Proof of Shuffle ....................................................................................  54
A.1 Variable mapping .......................................................................  54



1 Introduction
This document presents all the technical details of the design of our election 
system, Assembly Voting X. It describes all the cryptographic mechanisms that 
are used and all the protocols that the actors of the voting process have to 
follow.

In section 2 we describe the cryptographic algorithms that we use in our sys-
tem and the mathematical principles that they rely on. In section 3 we present 
the entire process that takes part during an election. We define all the protocols 
that happen between various entities that participate in the election process and 
also, we specify what cryptographic algorithms each protocol involves. More-
over, we present the protocols in chronological order of how they take place in the 
election process.

In section 4 we describe how a full auditing process can be performed, what 
algorithms are included and who are the actors responsible for each step. In the 
last section 5 we describe what security properties our election system achieves 
and under what assumptions.

3



2 Theoretical Background

2.1 Mathematics
2.1.1 Group

In mathematics, a group G = (G, ◦, inv, e) is an algebraic structure consisting 
of a set G of elements, a binary operation indicated by symbol ◦, a unary 
operation called inv and a neutral element e ∈ G. The following properties 
must be satisfied by G:

closure x ◦ y ∈ G
associativity x ◦ (y ◦ z) = (x ◦ y) ◦ z
identity element x ◦ e = e ◦ x = x
inverse element x ◦ inv(x) = e

for all x, y, z ∈ G.
If G has a fifth property called commutativity (x ◦ y = y ◦ x), then G is an

abelian group.
Moreover, if G is a finite group, then G has a finite number of elements and

we denote q = |G| as the order of the group. For example, a finite group would
be (Zq,+,−, 0), where Zq = {0, 1, ..., q − 1}, the binary operation is addition
modulo q, the inverse operation is negation and the identity element is 0.

The binary operation can be applied on the same element, namely x ◦ x =
[2]x. We define [k]x as the operation ◦ applied k times on the element x.

A finite group G = (G, ◦, inv, e) of order q is called cyclic group, if there is
a group element g ∈ G, such that G = (g, [2]g, [3]g, ..., [q]g). In this case, the 
element g is called the generator of G.

2.1.2 Finite Field

A field F = (F, +, ·) consists of a set F which is an abelian group in respect to 
both operations: addition and multiplication. The following properties hold:

• x+ y ∈ F and x · y ∈ F

• (F,+,−, 0) is an abelian group

• (F∗, ·,−1 , 1) is an abelian group

• multiplication is distributive over addition: x · (y + z) = x · y + x · z

for all x, y, z ∈ F.
A finite field is a filed with a finite number of elements, for example the set

of integers modulo p, denoted Fp, where p is a prime number.

4



2.1.3 Elliptic Curve over a Prime Field

We define the elliptic curve E over the prime field Fp as the set of points

E(Fp) = {(x, y) ∈ (Fp)2 | y2 = x3 + ax + b (mod p)} ∪ {O}

where a tuple (x, y) represent the coordinates of a point, O = (0, 0) is the point 
at infinity and a, b ∈ Fp.

The elliptic curve E(Fp) follows a group structure with the following rules:

• O is the identity element, thus P +O = O + P = P for all P ∈ E(Fp).

• The inverse operations is point negation, noted −. For all P = (xP , yP ) ∈
E(Fp), we define −P = (xP ,−yP ) such that P + (−P ) = O.

• The binary operation is point addition, noted +. Let P,Q ∈ E(Fp).
The line through P and Q intersects the elliptic curve in a third point
R = (xR, yR) ∈ E(Fp). The point addition is defined as P + Q = −R.
The coordinates of R can be computed in the following way:

xR = λ2 − xP − xQ (mod p)

yR = yP + λ(xR − xP ) (mod p)

where λ is the steep of line PQ. The steep can be computed in the
following way:

λ =

{
(yP − yQ)(xP − xQ)−1 (mod p) , if P 6= Q

(3x2
P + a)(2yP )−1 (mod p) , if P = Q

We define the total number of point on the E(Fp) as N and it can be cal-
culated using Schoof’s algorithm [1]. Any subgroup of E(Fp) has an order q
which is a divisor of N . In such a case, we define the cofactor of the subgroup
as h = N

q . To find any generator of the subgroup we follow:

• Choose a random point P ∈ E(Fp).

• Compute G = [h]P .

• If G = O, repeat the process. Otherwise, G is a generator.

In conclusion, we can define our cryptographic cyclic subgroup as:

G = {P ∈ E(Fp) | P = [k]G, k ∈ Zq}

where G is the generator and q is the order of the subgroup. We call the integer
k a scalar.

5



2.1.4 Elliptic Curve Discrete Logarithm Problem

The Elliptic Curve Discrete Logarithm Problem is defined in [2] the following 
way: Given the elliptic curve domain parameters (p, a, b, G, q, h) and a point

P ∈ G, find the scalar k ∈ Zp such that P = [k]G. For an elliptic curve to be 
cryptographically strong, the ECDLP has to be computationally infeasible.

For our cryptosystem we will use a predefined elliptic curve called secp256k1, 
also known as the Bitcoin Curve with the following domain parameters:

p ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe fffffc2f

a 0

b 7

G.x 79be667e f9dcbbac 55a06295 ce870b07 029bfcdb 2dce28d9 59f2815b 16f81798

G.y 483ada77 26a3c465 5da4fbfc 0e1108a8 fd17b448 a6855419 9c47d08f fb10d4b8

q ffffffff ffffffff ffffffff fffffffe baaedce6 af48a03b bfd25e8c d0364141

h 1

The equation of the elliptic curve is y2 = x3 + 7. The cofactor of the curve is 
1, that means any point on the curve is part of our cyclic subgroup as well. We 
assume the Elliptic Curve Discrete Logarithm Problem to be hard in respect to 
the secp256k1. We will reffer to this as the discrete logarithm assumption.

2.1.5 Elliptic Curve Point Encoding

Each point on the curve is represented by its x and y coordinate. As presented 
in section 2.1.3, the y coordinate can be calculated based on the x coordinate, 
but there would be two possible values for it. Thus, one extra bit of information 
is required specifying which of the two values is to be used.

An elliptic curve point can be represented as byte array in two ways: com-
pressed form or uncompressed form. The compressed form contains the byte 
representation of only the x coordinate to which is prepended a byte, 02 or 03 
depending on which value to choose for the y coordinate. The uncompressed 
form contains the byte representation of both x and y coordinates concatenated 
together, to which is prepended the byte 04.

In our system, when an elliptic curve point has to be stored in the database, 
or when it needs to be transferred over the network, or when it is used as input 
to a hash function, it is represented as byte array in compressed form.

2.1.6 Mapping a message on the Elliptic Curve

An important use case of a cryptographic system is to be able to interpret 
an arbitrary message (a plain text, a number, an id or even a more complex 
construction). In elliptic curve context, that means mapping a message into an 
elliptic curve point in a deterministic way. Additionally, this curve point must 
be able to be interpreted back as the original message.

We use the algorithm M ← String2Point(m) (algorithm 1), presented in
[2], that can map a plain text m ∈ C∗ to an elliptic curve point M ∈ E(Fp),

6



where C is the set of all possible one byte UTF-8 text characters. The byte rep-
resentation of message m is converted into a large integer mBN, called BigNum,
and used in the calculation of the x coordinate of the point M , while the y coor-
dinate is computed using the equation of the elliptic curve y ← RecoverY(x).
Note that the elliptic curve equation might spawn no valid values for y or two
values for y. In case y is not valid, it means x is not a valid coordinate to gen-
erate a point, otherwise, the algorithm randomly chooses one of the two value
for y and continues.

The x coordinate is computed by multiplying mBN with 256, in order to
use the right most byte as an adjusting byte in case the x coordinate does not
correspond to a valid point on the curve, i.e. we keep incrementing x until we
find a valid y. To ensure that x is less than the prime of the curve p we introduce
the condition that m can be at most 30 characters in length.

By having one byte space to find a valid point on the curve, we know from [2]
that the probability that all 256 x coordinates generate invalid points is 1/2256,
which we consider acceptable. Formally, the algorithm String2Point converts
an arbitrary text of maximum 30 characters in length into a valid point on the
elliptic curve with negligible failure rate.

Algorithm 1: String2Point(m)

Data: The message m = (c1, ..., c`) ∈ C∗
if ` > 30 then

return failure
end
b = (b1, ..., b`)← ByteRepresentationOf(m)
mBN ← Bytes2BigNum(b)
x0 ← mBN · 256
for i← 0 to 255 by 1 do

x← x0 + i
y ← RecoverY(x) // y2 = x3 + 7
M ← (x, y)
if M is valid then

return M // M ∈ E(Fp)
end

end
return failure

Recovering the text message m from an elliptic curve point M can be done by
calling m← Point2String(M) (algorithm 2). The algorithm tries to interpret
as text the byte representation of the x coordinate, disregarding the adjusting
byte (the right most byte). In case this fails, the algorithm returns a failure
state, meaning that point M does not encode a text message.

7



Having these two algorithms, mapping a message on the Elliptic Curve is a
sound procedure as

m = Point2String(String2Point(m)) , for all m ∈ C∗, with |m| ≤ 30.

Algorithm 2: Point2String(M)

Data: The point M = (x, y) ∈ E(Fp) = Zp × Zp
mBN ← x/256 // disregard the adjusting byte

b = (b1, ..., b`)← ByteRepresentationOf(mBN)
for i← 1 to ` by 1 do

ci ← Byte2Char(bi)
end
if all ci ∈ C then

m = (c1, ..., c`)
else

return failure
end
return m // m ∈ C∗

2.2 Zero Knowledge Proofs
A zero knowledge proof (ZKP) is an algorithm by which one party (the prover) 
can prove to another party (the verifier) that she knows a secret value x, without 
disclosing any information about x. A ZKP can be interactive, where the prover 
and the verifier have to collaborate in a protocol for the verifier to get convinced 
of the proof. A ZKP can also be non-interactive. In this case, the prover alone 
generates a proof that is publicly verifiable, thus convincing any public verifier 
of its statement.

There exists two algorithms Prove for generating a proof and Verify for 
verifying weather a proof validates. A classic proof has a structure of a triple 
(commitment, challenge and response). In an interactive zero knowledge pro-
tocol, a prover commits to a value, the verifier independently and randomly 
generates a challenge, the prover computes a response based on the challenge 
received and the verifier checks that the proof validates. The proof can be turned 
into a non-interactive one, using the Fiat-Shamir heuristic as described in [3]. 
The prover computes alone the challenge, in a deterministic manner, based on 
the commitment, using a hash function.

2.2.1 Discrete Logarithm Proof

A simple kind of ZKP is the discrete logarithm proof that proves knowledge 
of value x, such that Y = [x]G, formally

PK[(x) : Y = [x]G]

8



The most intuitive application of this could be to prove the possession of the
private key associated with a public key. In order to prove such a fact, a prover
and a verifier have to interact in the protocol described in figure 1. The resulting
proof would be PK = (K, c, r).

Prover Verifier

/*knows x*/

/*pick random scalar*/

k ∈R Zq
/*compute commitment*/

K ← [k]G

send K

/*pick random challenge*/

c ∈R Zq
send c

/*compute response*/

r ← k + c · x (mod q)

send r

/*verify proof*/

[r]G
?
= K + [c]Y

Figure 1: Protocol for proving the discrete logarithm

To generate a non-interactive proof, the protocol from figure 2 is turned
into two distinct algorithms: one for generating a proof PK ← ProveG(x)
(algorithm 3) and another one for validating whether a proof validates b ←
VerifyG(PK, Y ) (algorithm 4) that outputs a bit b ∈ B which represents true
or false. The prover generates a commitment, then computes the challenge
of the proof, based on that commitment, using a hash function, and finally,
computes the response of the proof. The prover publishes the proof, which is
universally verifiable. Any public verifier can check whether the proof validates.

Algorithm 3: ProveG(x)

Data: The base generator G ∈ E(Fp)
The private key x ∈ Zq

k ∈R Zq
K ← [k]G
Y ← [x]G
c← H(G||K||Y ) // compute challenge by hash function

r ← k + c · x (mod q)
PK ← (K, c, r)
return PK // PK ∈ E(Fp)× Zq × Zq

9



Algorithm 4: VerifyG(PK, Y )

Data: The base generator G ∈ E(Fp)
The proof PK = (K, c, r) ∈ E(Fp)× Zq × Zq
The public key Y ∈ E(Fp)

if c = H(G||K||Y ) and [r]G = K + [c]Y then
b← 1 // proof is valid

else
b← 0 // proof is invalid

end
return b // b ∈ B

2.2.2 Discrete Logarithm Equality Proof

A bit more complex ZKP is the discrete logarithm equality proof that proves that 
two different elliptic curve points Y, P ∈ E(Fp) have the same elliptic curve 
discrete logarithm x ∈ Zq in regards to two distinct generators G, H ∈ E(Fp).

PK[(x) : Y = [x]G ∧ P = [x]H]

The proof has the same structure as in previous section PK = (K, c, r), 
but here the commitment K = (KG, KH) is a tuple of points, one for each 
generator that the proof is based on. The updated protocol for proving the 
discrete logarithm equality is described in figure 2.

Again, to generate the discrete logarithm equality proof in a non-interactive 
manner, we turn the protocol into two algorithms: one for generating the proof 
PK ← ProveEqualityG,H (x) (algorithm 5) and another one for validating a 
proof b ← VerifyEqualityG,H (PK, Y, P ) (algorithm 6), where b ∈ B represents 
true or false. In this case, proof PK is universally verifiable and can be audited 
by any public verifier.

Algorithm 5: ProveEqualityG,H(x)

Data: The first base generator G ∈ E(Fp)
The second base generator H ∈ E(Fp)
The private key x ∈ Zq

k ∈R Zq
KG ← [k]G
KH ← [k]H
K ← (KG,KH)
c← H(G||H||KG||KH||Y ||P ) // Y = [x]G, P = [x]H
r ← k + c · x (mod q)
PK ← (K, c, r)
return PK // PK ∈ E(Fp)2 × Zq × Zq

10



Prover Verifier

/*knows x*/

/*pick random scalar*/

k ∈R Zq
/*compute commitment*/

KG ← [k]G

KH ← [k]H

K ← (KG,KH)

send K

/*pick random challenge*/

c ∈R Zq
send c

/*compute response*/

r ← k + c · x (mod q)

send r

/*verify proof*/

[r]G
?
= KG + [c]Y

[r]H
?
= KH + [c]P

Figure 2: Protocol for proving the discrete logarithm equality

Algorithm 6: VerifyEqualityG,H(PK, Y, P )

Data: The first base generator G ∈ E(Fp)
The second base generator H ∈ E(Fp)
The proof PK = (K, c, r) ∈ E(Fp)2 × Zq × Zq
The first public key Y ∈ E(Fp)
The second public key P ∈ E(Fp)

if c = H(G||H||KG||KH||Y ||P )
and [r]G = KG + [c]Y
and [r]H = KH + [c]P then

b← 1 // proof is valid

else
b← 0 // proof is invalid

end
return b // b ∈ B

11



2.2.3 Proof for Multiple Discrete Logarithms

An optimization in proving the discrete logarithm equality between multiple 
points in regards to their generators has been described in [4]. Using the opti-
mized algorithm for proving that

PK[(x) :
n∧
i=0

Yi = [x]Gi]

we generate the proof PK = (K, c, r) by following the protocol described in
figure 3. The optimization consists in the fact that the commitment K is just
one point instead of a list of points, regardless of the value of n.

Prover Verifier

/*knows x*/

/*pick random scalar*/

k ∈R Zq
/*compute scalars*/

h← H(Y1||...||Yn)

zi ← H(i||h), i ∈ {1, ..., n}

/*compute commitment*/

K ← [k](G0 +
∑n
i=1[zi]Gi)

send K
/*pick random challenge*/

c ∈R Zq
send c

/*compute response*/

r ← k + c · x (mod q)

send r
/*compute scalars*/

h = H(Y1||...||Yn)

zi = H(i||h), i ∈ {1, ..., n}

/*verify proof*/

[r](G0 +
∑n
i=1([zi]Gi))

?
= K + [c](Y0 +

∑n
i=1([zi]Yi))

Figure 3: Protocol for proving multiple discrete logarithms

The same as in the discrete logarithm equality case, the proof of multiple
discrete logarithms can be turned into an non-interactive one by computing the
challenge of the proof based on the commitment, using a hash function. The
proof is generated by the algorithm PK ← ProveMultipleG(x) (algorithm 7),
where G = (G0, ...Gn) is the list of generators.

12



Algorithm 7: ProveMultipleG(x)

Data: The list of generators G = (G0, G1, ..., Gn) ∈ E(Fp)n+1

The private key x ∈ Zq
k ∈R Zq
h← H(Y1||...||Yn) // Yi = [x]Gi, i ∈ {1, ..., n}
for i← 1 to n by 1 do

zi ← H(i||h)
end
K ← [k](G0 +

∑n
i=1[zi]Gi)

c← H(G0||...||Gn||K||Y0||...||Yn)
r ← k + c · x (mod q)
PK ← (K, c, r)
return PK // PK ∈ E(Fp)× Zq × Zq
The verifier accepts the proof if the algorithm VerifyG(PK,Y ) returns true.

The verification algorithm is described in algorithm 8.

Algorithm 8: VerifyMultipleG(PK,Y )

Data: The list of generators G = (G0, G1, ..., Gn) ∈ E(Fp)n+1

The proof PK = (K, c, r) ∈ E(Fp)× Zq × Zq
The list of public keys Y = (Y0, Y1, ..., Yn) ∈ E(Fp)n+1

h← H(Y1||...||Yn)
for i← 1 to n by 1 do

zi ← H(i||h)
end
if c = H(G0||...||Gn||K||Y0||...||Yn)
and [r](G0 +

∑n
i=1([zi]Gi)) = K + [c](Y0 +

∑n
i=1([zi]Yi)) then

b← 1 // proof is valid

else
b← 0 // proof is invalid

end
return b // b ∈ B

2.3 Hash Functions
A cryptographic hash function is an algorithm used for mapping data of arbitrary 
size to data of fixed size, also called the hash value. We define the hash function

H : B∗ → B`, where B` represents a bit array of length `. In practice, hash 
algorithms work on byte arrays instead of bit arrays. Thus, the length of the 
input or output array is `/8.

The hash value of any kind of data can be computed, for example a string, a 
number, even an object with a complex structure. The hash value would be the 
result of the hash function applied on the byte representation of that particular 
input data. A hash value can be computed of an arbitrary number of inputs at 
the same time. In such case, the hash function is applied on the concatenation 
of all byte representation of each input.

13



A hash function is known as a one way function, that means, one can easily 
verify that some input data maps to a given hash value but, if the input data 
is unknown, it is infeasible to calculate it given only a hash value. Another 
property of a cryptographic hash function is collision resistance. That means, 
it is difficult to find two different input data with the same hash values.

In our system, we will use the hash function called SHA-256 that outputs 
bit arrays of 256 bits in length (32 byte array).

2.4 Elgamal Cryptosystem
The Elgamal cryptosystem is an asymmetric, randomized encryption scheme, 
where anybody can encrypt a message using the encryption key resulting in a 
cryptogram, while only the one in possession of the decryption key can extract 
the message of a cryptogram. The scheme consists of a triple (KeyGen, Enc, 
Dec) of algorithms that work on the elliptic curve described in section 2.1.4. 
The scheme is considered secure under the discrete logarithm assumption.

An Elgamal key pair is a tuple (x, Y ) ← KeyGen() (algorithm 9), where x 
is a randomly chosen scalar representing the private decryption key and Y is an 
elliptic curve point corresponding to the public encryption key.

Algorithm 9: KeyGen()

x ∈R Zq
Y ← [x]G
return (x, Y ) // (x, Y ) ∈ Zq × E(Fp)

The encryption algorithm e = (R,C)← EncY (M, r) (algorithm 10) can be
used by anybody in possession of the encryption key Y , to generate a cryptogram
on a message M , using the randomnizer r. The cryptogram e can be decrypted
back to the original message M , only by the one in possession of the secret
decryption key x, using the decryption algorithm M ← Decx(e) (algorithm
11). For convenience of notation, we define E = E(Fp)×E(Fp) as the set of all
possible cryptograms.

Algorithm 10: EncY (M, r)

Data: The encryption key Y ∈ E(Fp)
The message M ∈ E(Fp)
The randomizer r ∈ Zq

R← [r]G
S ← [r]Y
C ← S +M
e← (R,C)
return e // e ∈ E

14



Algorithm 11: Decx(e)

Data: The decryption key x ∈ Zq
The cryptogram e = (R,C) ∈ E

S ← [x]R
M ← C − S
return M // M ∈ E(Fp)

Special encryption and decryption algorithms exist in case the message to be
encrypted is not an elliptic curve point but a scalar. An extra step is required
for mapping a curve point into a number from Zq, i.e. hashing the point S to
get the integer s ∈ Zq. Formally, the message to be encrypted is m ∈ Zq. The
algorithm for encrypting a scalar e = (R, c)← EncScalarY (m, r) is described in
algorithm 12, while the decryption algorithm m← DecScalarx(e) is described
in algorithm 13.

Algorithm 12: EncScalarY (m, r)

Data: The encryption key Y ∈ E(Fp)
The message m ∈ Zq
The randomizer r ∈ Zq

R← [r]G
S ← [r]Y
s← H(S)
c← s ·m (mod q)
e← (R, c)
return e // e ∈ E(Fp)× Zq

Algorithm 13: DecScalarx(e)

Data: The decryption key x ∈ Zq
The cryptogram e = (R, c) ∈ E(Fp)× Zq

S ← [x]R
s← H(S)
m← c · s−1 (mod q)
return m // m ∈ Zq

2.4.1 Proving the Content of a Cryptogram

Once a cryptogram is generated e = (R,C) ← EncY (M, r), only the sender
(the one who generated the cryptogram) and the receiver (the one in possession
of the decryption key x) know the value of the message M . Both of them have
the possibility to prove to somebody else (or publicly prove) the content of the
cryptogram.

The one who generated the cryptogram can prove to a verifier that the
cryptogram e contains message M by engaging in the protocol from figure 2
in order to prove the knowledge of the randomizer PK[(r) : R = [r]G ∧ (C −
M) = [r]Y ]. To generate a publicly verifiable proof, the sender can generate a
non-interactive proof PK ← ProveEqualityG,Y (r) (algorithm 5). Any public

15



verifier is convinced that cryptogram e contains message M if the verification
algorithm succeeds VerifyEqualityG,Y (PK, R, C − M) (algorithm 6).

At the same time, the one in possession of the decryption key x can prove 
the content of the cryptogram e to a verifier by engaging in the same proto-
col from figure 2 but this time for proving the knowledge of the decryption 
key PK[(x) : Y = [x]G ∧ (C − M) = [x]R]. To generate a publicly verifi-
able proof, the receiver of the cryptogram can generate a non-interactive proof 
PK ← ProveEqualityG,R(x) (algorithm 5). Any public verifier is convinced 
that cryptogram e contains message M if the verification algorithm succeeds
VerifyEqualityG,R(PK, Y, C − M) (algorithm 6).

2.4.2 Homomorphic Encryption

Elgamal point encryption based on elliptic curve cryptographic primitive is a 
homomorphic encryption scheme with respect to point addition. That means, 
component wise addition of two cryptograms would result in a new, valid cryp-
togram that contains the two messages added together.

EncY (M1, r1) + EncY (M2, r2) = EncY (M1 + M2, r1 + r2)

The resulting encryption of the homomorphic addition of two cryptograms is 
e′ = (R′, C ′) ← AddEnc(e1, e2) (algorithm 14).

Algorithm 14: AddEnc(e1, e2)

Data: The first cryptogram e1 = (R1, C1) ∈ E
The second cryptogram e2 = (R2, C2) ∈ E

R′ ← R1 +R2

C ′ ← C1 + C2

e′ ← (R′, C ′)
return e′ // e′ ∈ E

Following the procedure above, we can re-encrypt a given encryption e =
(R,C) ← EncY (M, r) by homomorphically adding it to an empty cryptogram
(an encryption of the neutral point O) with randomizer r′ ∈R Zq. The result
is a new, randomly different cryptogram that contains the same message M .
The process of generating the new cryptogram e′ = (R′, C ′) ← ReEncY (e, r′)
is described in algorithm 15.

Algorithm 15: ReEncY (e, r′)

Data: The encryption key Y ∈ E(Fp)
The initial cryptogram e = (R,C) ∈ E
The new randomizer r′ ∈ Zq

e2 ← EncY (O, r′) // algorithm 10

e′ ← AddEnc(e, e2) // algorithm 14

return e′ // e′ ∈ E

Usually, a re-encrypted cryptogram comes with a re-encryption proof to
assure that the content of the cryptogram has not been changed. The proof is

16



a non-interactive discrete logarithm equality proof (described in section 2.2.2) 
PK = (K, c, r) ← ProveG,Y (r

′), while the proof verification algorithm is b ← 
VerifyG,Y (PK, R′ − R, C ′ − C), where b ∈ B.

2.4.3 Elgamal Threshold Cryptosystem

A t out of n threshold cryptosystem is an encryption scheme where the decryp-
tion key is split among n key holders, called trustees. Anybody can encrypt a 
message using the encryption key. Decryption of a message happens during a 
process in which at least t trustees have to collaborate in a cryptographic pro-
tocol. It is recommended that t ≥ 2/3 · n. The entire scheme is inspired from [5] 
which is based on mathematical principles of the threshold cryptosystem [6, 7].

The key generation algorithm outputs (sx1, ..., sxn, Y ) ← KeyGen(n, t), 
where Y is the public encryption key and each sxi is a private share of the 
decryption key, one for each of the n trustees. The algorithm spans over the 
protocol described in figure 4, which we call the threshold ceremony.

During the threshold ceremony, all trustees generate a private-public key pair
(xi, Yi) and publish to the server their public keys. The public encryption key
is computed by the sum of the public keys of all trustees Y =

∑n
i=1 Yi, while

nobody being in the possession of the decryption key x =
∑n
i=1 xi, because all

xi are secret. Instead, all trustees work together to distribute x such that any
t trustees can find it when necessary.

Each trustee Ti generates a polynomial function of degree t− 1

fi(z) = xi + pi,1 · z + ...+ pi,t−1 · zt−1

, where pi,k ∈R Zq with k ∈ {1, ..., t−1}. Next, all trustees publish to the server
the curve points (Pi,1, ..., Pi,t−1), where each Pi,k ← [pi,k]G. We call (pi,k, Pi,k)
a private-public polynomial coefficient pair.

When all trustees have published their public coefficients, each trustee com-
putes a partial secret share of the decryption key for each of the other trustees
by si,j ← fi(j), and encrypts them with that specific trustee’s public key
ei,j ← EncScalarYj

(si,j). Finally, all trustees publish to the server all en-
crypted partial secret shares of the decryption key.

By encrypting the partial secret shares with different trustee’s public key,
we make sure that only that specific trustee can read his partial secret shares
of the decryption key. This procedure is a small deviation from [5], which we
introduced in order to simulate a secret communication channel between each
two trustees.

Finally, each trustee Ti downloads his encrypted partial secret shares ej,i,
with j ∈ {1, ..., n}, decrypts them sj,i ← DecScalarxi(ej,i) and validates
that they are consistent with the polynomial coefficients of the other trustees

[sj,i]G
?
= Yj +

∑t−1
k=1[ik]Pj,k. If all partial secret shares validate, then trustee Ti

computes his secret share of the decryption key by sxi ←
∑n
j=1 sj,i.

17



Trustee Ti Server

/*generate key pair*/

(xi, Yi)← KeyGen()

send Yi
/*when all Yi have been

published, i ∈ {1, ..., n}*/

set t ∈ [ 2
3n, ..., n]

send t
/*generate coefficient pairs*/

for k = 1, 2, ..., t− 1 do:

– (pi,k, Pi,k)← KeyGen()

send Pi,k
k ∈ {1, ..., t− 1}

set fi(a) = xi +
∑t−1
k=1 pi,k · ak

/*compute partial secrets for each trustee*/

for j = 1, 2, ..., n do:

– si,j ← fi(j)

– ei,j ← EncScalarYj
(si,j)

send ei,j
j ∈ {1, ..., n}

/*when all ei,j have been

published, i, j ∈ {1, ..., n}*/

send ej,i
j ∈ {1, ..., n}

/*decrypt and validate partial secrets*/

for j = 1, 2, ..., n do:

– sj,i ← DecScalarxi(ej,i)

– verify [sj,i]G = Yj +
∑t−1
k=1[ik]Pj,k

/*compute share of the decryption key*/

if all partial secrets validate

– b← true

– sxi ←
∑n
j=1 sj,i (mod q)

else

– b← false

send b
/*when all Ti validate*/

/*compute public key*/

Y ←
∑n
i=1 Yi

Figure 4: Threshold ceremony

18



At the end of the threshold ceremony, for each trustee Ti, with i ∈ {1, ..., n},
the public share of the decryption key (sYi = [sxi]G) is publicly computable by
the following:

sYi ←
n∑
j=1

(Yj +
t−1∑
k=1

[ik]Pj,k)

The encryption algorithm of the threshold cryptosystem is identical to the
Point Encryption algorithm described in section 2.4. Note that using the thresh-
old encryption scheme, we can only encrypt a message M that is represented as
a point on the elliptic curve

e = (R,C)← EncY (M, r).

The decryption algorithm of the threshold cryptosystem is inspired from
paper [6]. At least t trustees are needed to collaborate in the protocol described
in figure 5 in order to extract the message of a cryptogram M ← DecT (e), where
T ⊂ {1, ..., n} is the subset of trustees that do participate in the decryption
protocol, with |T | ≥ t and e = (R,C) is the cryptogram to be decrypted. Each
trustee Ti, with i ∈ T , computes a partial decryption Si ← [sxi]G and sends
it to the server, where sxi is trustee’s share of the decryption key. The trustee
also publishes a proof of correct decryption in form of a non-interactive discrete
logarithm zero knowledge proof PK ← ProveEqualityG,R(sxi) (algorithm 5).

When receiving a partial decryption from a trustee Ti, the server accepts it
if the proof of correct decryption validates by VerifyEqualityG,R(PK, sYi, Si)
(algorithm 6), where sYi is trustee’s public share of the decryption key.

After it received valid, partial decryptions from all trustees Ti, with i ∈ T ,
the server aggregates all partial decryptions together to finalize the decryption
and to output the message M . The aggregation process from [6] is described as
follows:

Basically, M = C − [x]R, where x is the main decryption key that nobody
has. A possible way of computing [x]R is by calculating the Lagrange Interpola-
tion Polynomial where each term is a partial decryption received from a trustee
Si that needs to be multiplied by the Lagrange Interpolation Polynomial coeffi-
cient which is λ(i) =

∏
j∈T,j 6=i

−j
i−j (mod q). Formally, M ← C−

∑
i∈T [λ(i)]Si.

Note that the Lagrange Interpolation Polynomial can be computed only
when the number of terms is at least the degree of the polynomial, i.e |T | ≥ t.

19



Trustee Ti Server

/*knows sxi, e = (R,C)*/ /*knows e = (R,C), {sY1, ..., sYn}*/

/*generate partial decryption*/

Si ← [sxi]R

PKi ← ProveEqualityG,R(sxi)

send Si, PKi

/*validate proof*/

if VerifyEqualityG,R(PKi, sYi, Si)

– accept partial decryption Si
– include i into T

/*when |T | ≥ t

/*compute Ti’s Lagrange Interpolation

Polynomial coefficients*/

for each i ∈ T do:

– λ(i)←
∏
j∈T,j 6=i

−j
i−j (mod q)

/*finalize decryption*/

M ← C −
∑
i∈T [λ(i)]Si

Figure 5: Threshold decryption

2.5 Schnorr Digital Signature
The Schnorr digital signature scheme, introduced in [8], consists of a triple of 
algorithms (KeyGen, Sign, VerifySignature), which are based on elliptic 
curve cryptographic primitive.

A Schnorr key pair is a tuple (x, Y ) ← KeyGen() (algorithm 9), where x 
is the random, private signing key and Y is the corresponding public signature 
verification key.

Only the owner of the signing key is able to generate a signature σ = (c, s)←
Signx(m), on an arbitrary message m ∈ B∗. In order to generate a signature,
the signer follows algorithm 16.

Algorithm 16: Signx(m)

Data: The signing key x ∈ Zq
The message to be signed m ∈ B∗

r ∈R Zq
K ← [r]G
c← H(K||m)
s← r − c · x (mod q)
σ ← (c, s)
return σ // σ ∈ Zq × Zq

20



Given a signature σ on a message m, anybody in the possession of the
public verification key Y is able to verify the validity of the signature b ←
VerifySignatureY (σ,m), with b ∈ B which represents true or false. The
signature verification algorithm is described in algorithm 17

Algorithm 17: VerifySignatureY (σ,m)

Data: The verification key Y ∈ E(Fp)
The signature σ = (c, s) ∈ Zq × Zq
The signed message m ∈ B∗

K ← [s]G+ [c]Y
if c = H(K||m) then

b← 1 // signature is valid

else
b← 0 // signature is invalid

end
return b // b ∈ B

2.6 Furukawa’s Proof of Shuffle
A cryptographic shuffle is a process that, given as input a list of cryptograms, 
outputs another list of cryptograms such that each cryptogram from the input 
list is re-encrypted and permuted in a random new order, forming the output list. 
Formally, given a list of cryptograms e = (e1, ..., en) ∈ En, with ei = (Ri, Ci) 
and i ∈ {1, ..., n}, a list of randomizers r′ = (r′1, ..., r′n) ∈ Zqn and a permutation
ψ : {1, ..., n} → {1, ..., n} from the set Ψn of all permutations of n elements, 
the shuffle algorithm outputs the list e′ = (e′1, ..., e′n) ← ShuffleY (e, r′, ψ)
(algorithm 18) where each e′i = (R′i, Ci′) ← ReEncY (ej , ri′) for j = ψ(i).

Algorithm 18: ShuffleY (e, r′, ψ)

Data: The encryption key Y ∈ E(Fp)
The input list of cryptograms e = (e1, ..., en) ∈ En
The list of randomizers r′ = (r′1, ..., r

′
n) ∈ Znq

The permutation ψ ∈ Ψn

for i← 1 to n by 1 do
e′i ← ReEncY (eψ(i), r

′
i) // algorithm 15

end
e′ ← (e′1, ..., e

′
n)

return e′ // e′ ∈ En

The really interesting aspect of a shuffle is how to prove in zero knowledge
that the shuffling calculations were done correctly and that no content of the
cryptograms has been changed. Our proof of shuffle is based on an algorithm
presented by Jun Furukawa in [9] (later updated in [10, 11]). We adapted all
calculations to elliptic curve point operations. The proof consists of two parts:

1. proving that no content of the cryptograms has been changed, i.e. same
randomizer r′i and permutation ψ have been used to re-encrypt both parts

21



of the cryptogram tuples

e′i = (R′i, C
′
i) = (Rψ(i) + [r′i]G,Cψ(i) + [r′i]Y )

2. proving that ψ is indeed a permutation, which is equivalent to proving
that the matrix Aψ is a permutation matrix, where

Aψ =

A1,1 . . . A1,n

...
. . .

...
An,1 . . . An,n

 ∈ {0, 1}n·n , where Ai,j =

{
1, if ψ(i) = j

0, otherwise

The shuffle proof PK = (R′, C ′, U,U , T, Ṫ , V, V̇ , V̇ ,W, Ẇ , Ẇ , c, z, s, λ′) is
constructed by the protocol presented in figure 6. In our proof construction,
(R′, C ′, U,U , T, Ṫ , V, V̇ , V̇ ,W, Ẇ , Ẇ ) represent the commitment, c represents
the challenge and (z, s, λ′) is the response of the proof. The verifier accepts the
proof in the end (is convinced that the contents of the cryptograms have not
changed during the shuffling process) if the final verification step validates.

Prover Verifier

/*knows e, r′, ψ */ /*knows e, e′ */

/*pick random scalars*/

σ, ρ, τ, λ, a,∈R Zq
α = (α1, ..., αn) ∈R Znq
λ = (λ1, ..., λn) ∈R Znq
/*compute commitment (algorithm 19)*/

K ← ShuffleCommitY (e, r′, ψ,

σ, ρ, τ, λ, a,α,λ)

send K

/*pick random challenge*/

c = (c1, ..., cn) ∈R Znq
send c

/*compute response (algorithm 20)*/

r ← ShuffleResp(r′, ψ, λ, a,α,

λ, c)

send r

/*verify proof (algorithm 21)*/

PK ← (K, c, r)

ShuffleVerY (PK, e, e′)

Figure 6: Protocol for proving a shuffle

22



For notation convenience, when we express the shuffling of a list, we will use
the permutation notation, as in [10], instead of the permutation matrix. For
example, given a list of elements (g1, ..., gn) and a permutation ψ ∈R Ψn, having
its permutation matrix Aψ = (A1,1, ..., An,n) ∈ {0, 1}n·n, we express a shuffled
element like g′i = gψ(i), instead of g′i =

∑n
j=1 gj ·Ai,j .

For convenience, the entire protocol has been split into multiple sub-algorithms
(i.e. ShuffleCommit, ShuffleResp, ShuffleVer) that help in constructing the
proof. Changes in variable names, compared to [9] are stated in appendix A.1.

In section ”Constructing the Main Protocol” of [9], it is presented an extra
security mechanism, needed in case the prover knows the randomizers used in
the generation of the initial list of cryptograms e = (e1, ..., en). New basis
{G̃, G̃1, ..., G̃n} must be set independently chosen from e. Next, it must be
proven that the same randomizers r′i and permutation ψ has been applied to
the basis {G̃, G̃1, ..., G̃n} and to both tuples in each cryptogram ei.

(G̃′i, R
′
i, C
′
i) = (G̃ψ(i) + [r′i]G̃, Rψ(i) + [r′i]G,Cψ(i) + [r′i]Y )

We can skip the computation of G̃, G̃i and G̃′i, while our shuffle proof still
has the same security properties as in [9], on the assumption that the prover is
not in the possession of the randomizers associated to each cryptogram of e.

23



Algorithm 19: ShuffleCommitY (e, r′, ψ, σ, ρ, τ, λ, a,α,λ)

Data: The encryption key Y ∈ E(Fp)
The input list of cryptograms e = (e1, ..., en) ∈ En
ei = (Ri, Ci), where i ∈ {1, ..., n}
The list of randomizers r′ = (r′1, ..., r

′
n) ∈ Znq

The permutation ψ ∈ Ψn

Scalars σ, ρ, τ, λ, a,∈ Zq and
α = (α1, ..., αn),λ = (λ1, ..., λn) ∈ Znq
/* commitment to cryptogram list e */

R′ ← [a]G+
∑n
i=1[αi]Ri

C ′ ← [a]Y +
∑n
i=1[αi]Ci

/* compute scalars */

for i← 1 to n by 1 do
ṫi ← τ · λi + 3 · αψ(i) (mod q)
v̇i ← ρ · r′i + 3 · α2

ψ(i) (mod q)

ẇi ← σ · r′i + 2 · αψ(i) (mod q)

end
v̇ ← τ · λ+ ρ · a+

∑n
i=1 α

3
i (mod q)

ẇ ← σ · a+
∑n
i=1 α

2
i (mod q)

/* compute commitment to permutation */

U ← [λ]G, T ← [τ ]G, V ← [ρ]G
V̇ ← [v̇]G, W ← [σ]G, Ẇ ← [ẇ]G
for i← 1 to n by 1 do

Ui ← [λi]G, Ṫi ← [ṫi]G, V̇i ← [v̇i]G, Ẇi ← [ẇi]G
end

U ← (U1, ..., Un), Ṫ ← (Ṫ1, ..., Ṫn)
V̇ ← (V̇1, ..., V̇n), Ẇ ← (Ẇ1, ..., Ẇn)
K ← (R′, C ′, U,U , T, Ṫ , V, V̇ , V̇ ,W, Ẇ , Ẇ )
return K // K ∈ E(Fp)8+4·n

24



Algorithm 20: ShuffleResp(r′, ψ, λ, a,α,λ, c)

Data: The list of randomizers r′ = (r′1, ..., r
′
n) ∈ Znq

The permutation ψ ∈ Ψn

Scalars λ, a ∈ Zq and α = (α1, ..., αn),λ = (λ1, ..., λn) ∈ Znq
The list of challenges c = (c1, ..., cn) ∈ Znq

λ′ ←
∑n
i=1 λi · c2i + λ (mod q)

z ←
∑n
i=1 r

′
i · ci + a (mod q)

for i← 1 to n by 1 do
si ← αi + cψ−1(i) (mod q)

end
s← (s1, ..., sn)
return (λ′, z, s) // (λ′, z, s) ∈ Z2+n

q

Algorithm 21: ShuffleVerY (PK, e, e′)

Data: The encryption key Y ∈ E(Fp)
The proof of shuffle PK = (K, c, r)
K = (R′, C ′, U,U , T, Ṫ , V, V̇ , V̇ ,W, Ẇ , Ẇ ) ∈ E(Fp)8+4·n

U = (U1, ..., Un), Ṫ = (Ṫ1, ..., Ṫn) ∈ E(Fp)n

V̇ = (V̇1, ..., V̇n), Ẇ = (Ẇ1, ..., Ẇn) ∈ E(Fp)n
c = (c1, ..., cn) ∈ Znq
r = (λ′, z, s) ∈ Z2+n

q

s = (s1, ..., sn) ∈ Znq
The input list of cryptograms e = (e1, ..., en) ∈ En
ei = (Ri, Ci), with i ∈ {1, ..., n}
The output list of cryptograms e′ = (e′1, ..., e

′
n) ∈ En

e′i = (R′i, C
′
i), with i ∈ {1, ..., n}

if [λ′]G = U +
∑n
i=1[c2i ]Ui

and [λ′]T + [z]V + [
∑n
i=1 s

3
i − c3i ]G = V̇ +

∑n
i=1[ci]V̇i + [c2i ]Ṫi

and [z]W + [
∑n
i=1 s

2
i − c2i ]G = Ẇ +

∑n
i=1[ci]Ẇi

and [z]G+
∑n
i=1[si]Ri = R′ +

∑n
i=1[ci]R

′
i

and [z]Y +
∑n
i=1[si]Ci = C ′ +

∑n
i=1[ci]C

′
i

then
b← 1 // proof is valid

else
b← 0 // proof is invalid

end
return b // b ∈ B

25



The proof of shuffle can be made non-interactive by having the list of chal-
lenges c calculated by a hash function that takes as input the initial list of
cryptograms e, the commitment of the proof K and the outputted list of cryp-
tograms e′, as presented in [10]. The algorithm for computing the challenges is
described in algorithm 22.

Algorithm 22: ShuffleChall(e, e′,K)

Data: The input list of cryptograms e = (e1, ..., en) ∈ En
The output list of cryptograms e′ = (e′1, ..., e

′
n) ∈ En

The commitment of the proof K ∈ E(Fp)8+4·n

h← H(e1||...||en||K||e′1||...||e′n)
for i← 1 to n by 1 do

ci ← H(i||h)
end
c = (c1, ..., cn)
return c // c ∈ Znq

Now the entire proof of shuffle PK ← ProveShuffleY (e, r′, ψ) (algorithm
23) can be generated by the prover alone by running the algorithm 23. To
verify a non-interactive PK, any public verifier has to run the algorithm b ←
VerifyShuffleY (PK, e, e′) (algorithm 24), where b ∈ B represents whether the
proof is valid or not.

26



Algorithm 23: ProveShuffleY (e, r′, ψ)

Data: The encryption key Y ∈ E(Fp)
The input list of cryptograms e = (e1, ..., en) ∈ En
The list of randomizers r′ = (r′1, ..., r

′
n) ∈ Znq

The permutation ψ ∈ Ψn

σ, ρ, τ, λ, a,∈R Zq
α = (α1, ..., αn),λ = (λ1, ..., λn) ∈R Znq
K ← ShuffleCommitY (e, r′, ψ, σ, ρ, τ, λ, a,α,λ) // commitment

// (alg. 19)

c← ShuffleChall(e, e′,K) // challenge(alg. 22)

r ← ShuffleResp(r′, ψ, λ, a,α,λ, c) // response(alg. 20)

PK ← (K, c, r)
return PK // PK ∈ E(Fp)8+4·n × Znq × Z2+n

q

Algorithm 24: VerifyShuffleY (PK, e, e′)

Data: The encryption key Y ∈ E(Fp)
The proof of shuffle PK = (K, c, r) ∈ E(Fp)8+4·n × Znq × Z2+n

q

The input list of cryptograms e = (e1, ..., en) ∈ En
The output list of cryptograms e′ = (e′1, ..., e

′
n) ∈ En

if c = ShuffleChall(e, e′,K) // algorithm 22

and ShuffleVerY (PK, e, e′) // algorithm 21

then
b← 1 // proof is valid

else
b← 0 // proof is invalid

end
return b // b ∈ B

27



3 Election Protocol

3.1 Involved Parties
In our election process multiple parties are involved. Each party represents a 
human with access to a computer or simply a process/software that follows a 
particular protocol. All these parties can be categorized into the following 6 
types:

• Election Administrator E : There exists one or many administrators that
are responsible for setting up the election event. An administrator is a
person controlling a computer with access to internet.

• Voter V : There exists a list of eligible voters, each noted Vi, with i ∈
{1, ..., nv}, where nv is the total number of voters. A voter is a human
being that is allowed to participate in this election. A voter needs to have
access to a computer that has an internet connection. Voters are the ones
to generate vote cryptograms.

• Printing Authority P : There is a set of printing authorities, each noted
as Pi, with i ∈ {1, ..., np}, where np is the total number of printing au-
thorities. Each of them is responsible for generating voter credentials
and distribute them privately to the voters. It is recommended that each
printing authority should use a different communication channel for dis-
tributing credentials (e.g. e-mail, post, SMS). A printing authority is
an institution (consisting of humans and software processes) that has to
follow our protocol.

• Trustee T : There is a set of trustees, each noted as Ti, with i ∈ {1, ..., nt},
where nt is the total number of trustees. A trustee is a human controlling
a computer that has the Trustee Application installed. Trustees are re-
sponsible for preserving the privacy and the fairness of the election during
the election phase by working together to build the election encryption
key while safely storing their shares of the decryption key.

• Mix Node M : There exists a mixnet represented by a set of mix nodes,
each noted as Mi, with i ∈ {1, ..., nm}, where nm is the total number
of mix nodes. A mix node is a software process that runs on a separate
server with enough computation capability. The mixnet is responsible for
preserving the anonymity of the election by shuffling the entire list of vote
cryptograms in an indistinguishable way.

• Bulletin Board B : There is one bulletin board that contains all the in-
formation about an election. It is the communication central unit as all
other parties push/pull data to/from it. It consists of three parts:

1. election configuration, which has to be set up during the pre-election
phase. All data included here is described at section 3.2.

28



2. list of vote cryptograms, which is being populated during the election
phase. The list is implemented with the following properties: no
elements of the list are ever removed or modified; each new element
is appended at the end of the list.

3. mixing and decryption files, which are collected during the post-
election phase. These files contribute in the process of computing
the result of the election.

The bulletin board is a piece of software, accessible over internet by any
other actor involved in the election process.

3.2 Pre-election Phase
During the pre-election phase the election administrators have to gather all 
the information needed to set up an election. That includes:

• the election start date and end date

• the election question and election type

• the possible answers (vote options) m = (m1, ...,mnc
), where nc is the

number of vote options, each representing a candidate name

• the list of eligible voters V = (V1, ...,Vnv
). Each voter is defined by contact

information for each of the communication channels that is used in the
voter credential distribution process (section 3.2.1), e.g. an e-mail address,
a postal address or a phone number.

• the list of printing authorities P = (P1, ...,Pnp
) used for distributing

voter credentials. Each printing authority is specified to use a particular
communication channel for distributing voter credentials, e.g. e-mail, post
or SMS.

• the lists of trustees T = (T1, ..., Tnt) and mix nodes M = (M1, ...,Mnm).

Next, the bulletin board will generate its signing key pair (xsign, Ysign) ←
KeyGen() (algorithm 9), where xsign is the signing key and will be kept secret
throughout the election period, and Ysign is the public signature verification key.

Next, the system maps all vote options m to unique points on the elliptic
curve M = (M1, ...,Mnc

) ∈ E(Fp)nc with each Mi = String2Point(mi) (algo-
rithm 1). All vote options have to be represented in E(Fp) so they can be used
in cryptographic procedures. The mapping algorithm is described at section
3.2.2.

Next, all trustees participate in the threshold ceremony, described in section
2.4.3 in order to generate the election encryption key Yenc and each trustee’s
share of the decryption key sxi. Formally, (sx1, ..., sxnt

, Yenc)← KeyGen(nt, t)
(figure 4), where t is the threshold limit for decryption.

Finally, all printing authorities participate in the voter credential distribution
process to distribute voter credentials. Also, public signature verification keys
are computed for all voters. The process is described in section 3.2.1.

29



3.2.1 Voter Credential Distribution Process

Each Printing Authority Pi ∈ P , receives a list of voters consisting of contact 
details for each voter a = (a1, ..., anv ) in form of e-mail addresses or postal 
addresses or phone numbers, depending on the printing authority’s communi-
cation channel. The printing authority generates a random key pair for each of 
them (xi,j , Yi,j ) ← KeyGen() (algorithm 9), with j ∈ {1, ..., nv}. The Printing 
Authority distributes the secret key xi,j to that specific voter Vj (using voter’s 
contact detail aj ) and appends the corresponding public key Yi,j in the list of 
voters next to the specific voter Vj .

All printing authorities return to the Bulletin Board the lists with voters 
contact details and public keys (aj , Yi,j ). The Bulletin Board combines all public
keys received from all printing ∑np

authorities for each voter to form voter’s public 
signature verification key Yj = i=1 Yi,j .

For authenticating to the voting system, the voter Vj ∈ V has to input in 
the browser all secret keys (x1,j , ..., xnp,j ) received via different channels from all
printing authorities. The browser will combine all of them to form the voter’s
signing key xj =

∑np

i=1 xi,j (mod q).

3.2.2 Mapping Vote Options on the Elliptic Curve

An expressed vote (a vote in plain text) must be able to be converted, deter-
ministically, into an elliptic curve point in order to be used in our cryptographic 
protocols. Additionally, a point from the elliptic curve must be able to be turned 
back to a plain text vote, if the point has been constructed from a plain text.

Consequently, only a finite number of points from E(Fp) can be mapped to a 
plain text that can be interpreted as valid votes. All the other points will be 
regarded as invalid votes.

The mapping procedure from a plain text m to an elliptic curve point M is 
called M ← String2Point(m) and is described in the algorithm 1. Recovering 
the text of the vote m from an elliptic curve point M can be done by calling 
m ← Point2String(M) (algorithm 2).

Depending on the election type (referendum, simple election, multiple choice 
election, STV election), the text m can be constructed in different ways. We 
recall from section 2.1.6 that m can be maximum 30 characters in length.

For convenience, we will describe the case of a simple election where the 
voters have to select one candidate only. Each candidate must have a distinct 
name which will be used as m and it can be at most 30 characters in length. All 
names are turned into elliptic curve points using the String2Point algorithm. 
When decoded back from an elliptic curve point, the candidate name will be 
visible in plain text.

30



3.3 Election Phase
3.3.1 Voting Procedure

The election phase lasts from the election start date until the election end date. 
During this time, each voter Vj ∈ V can authenticate using the credentials re-
ceived over different communication channels from different printing authorities 
and can participate in the voting process which consists of multiple steps:

• Voter Vj inputs in the browser all credentials received from the printing
authorities xi,j , with i ∈ {1, ..., np}. The browser combines all credentials
to form the voter’s secret signing key xj =

∑np

i=1 xi,j (mod q).

• The browser tries to authenticate the voter Vj to the bulletin board B by
following the voter authentication protocol (figure 7).

• The voter picks a vote option m and the browser converts it into an elliptic
curve point M ← String2Point(m) (algorithm 1). Next, the browser
collaborates with the bulletin board in the vote cryptogram generation
process in order to encrypt the voter’s choice. This process is described
in section 3.3.2. At the end of the process, the vote cryptogram e and the
proof of correct encryption PK will be generated.

• At this point, the voter has two options. If he has enough trust in the
voting application, the voter can register the vote cryptogram e on the
bulletin board (the process continues on the next bullet point). Otherwise,
the voter has the option to challenge the vote cryptogram (verify that it
actually contains the vote m), process described in section 3.3.3.

If the voter chooses to challenge the encryption, the browser will print on
the screen all information about the vote cryptogram that is necessary to
revert the encryption process (i.e. the vote cryptogram e, the encryption
key Yenc and the randomizer r). The voter must use a second, trusted
device to perform the decryption process, in order to output the plain text
m. If the vote m corresponds to the selected candidate, the voter gains
confidence that his browser behaved correctly, otherwise, there is a clear
evidence of an attack to the voter’s machine.

The voter has to recast his vote (return to previous bullet point) and he
can repeat this process as many times as needed until he gains enough
trust in the voting application.

• The browser asks the bulletin board B for the latest hash value of the
board ha, which we call the acknowledged hash. The browser computes
the vote’s content hash hv = H(s), where s is a message containing the
following information: the voter id, the election id, the vote cryptogram
e, the acknowledged hash ha and the acknowledged time stamp.

• The browser certifies the authenticity of the vote cryptogram by generat-
ing a signature of the voter Vj on the vote’s content hash as a Schnorr

31



signature σ ← Signxj
(hv) (algorithm 16). The browser submits to the

bulletin board the following: the vote cryptogram e, the proof of correct
encryption PK, the vote content hash hv and the signature σ.

• The bulletin board B receives this information and accepts the new vote
cryptogram if all the following are valid: the proof of correct encryption,
the vote content hash, the voter’s signature and the acknowledged time
stamp is not too old (described in section 3.3.5).

• If the encrypted vote is accepted, the bulletin board B appends it at the
end of the list of vote cryptograms. Next, the bulletin board calculates
the new hash value of the list (see section 3.3.5) hb = H(b), where b is a
message that contains the following information: the vote content hash hv,
the previous hash value of the board hb−1 and the registration time stamp
tr. Afterwards, the bulletin board sends back to the voter a confirmation
receipt ρ in form of a Schnorr signature on the following message r: voter’s
signature σ and the new hash value of the board hb. The confirmation
receipt is computed ρ← Signxsign

(r) (algorithm 16).

Voter Vj Bulletin Board B

/*knows xj*/ /*knows Y = (Y1, ..., Ynv
)*/

PK ← ProveG(xj)

send j, PK
/*validate proof*/

if VerifyG(PK, Yj)

– successful authentication

Figure 7: Protocol for voter authentication

32



3.3.2 Vote cryptogram generation process

During the vote cryptogram generation process, the voter’s browser collaborates 
with the bulletin board for generating the cryptogram. This process results in 
the fact that the voter will not be in possession of the randomizer value used 
in the cryptogram e. That is achieved by both the browser and the bulletin 
board building up the randomizer but none of them knowing its entire value. It 
is important for the voter not to know this value so he cannot produce crypto-
graphic evidence of the way he voted (as in section 2.4.1), thus enforcing receipt 
freeness. The vote cryptogram generation process is described in figure 8.

The process starts with the Bulletin Board B delivering to the voter Vj an 
empty cryptogram (an encryption of the neutral point O) e0 ← Enc(O, r0)

(algorithm 10), where r0 ∈R Zq. Next, B starts an interactive zkp of discrete 
logarithm equality, as in figure 2, in order to prove to Vj that e0 is indeed an 
empty cryptogram. Formally,

PK0 = PK[(r0) : R0 = [r0]G ∧ C0 = [r0]Y ].

The reason PK0 needs to be an interactive proof is that PK0 does not need 
to be universally valid. Instead, only the voter needs to be convinced that e0 is 
an empty cryptogram.

Next, the voter builds his vote cryptogram on top of the empty cryptogram 
that he just received. Formally, the voter encrypts his vote M with the random-

izer r1 ∈R Zq by generating the cryptogram e1 ← EncYenc (M, r1) (algorithm 
10), which he needs to homomorphically add to the empty cryptogram in order 
to generate his final vote cryptogram e = AddEnc(e0, e1) (algorithm 14). The 
voter also generates a proof of correct encryption PK ← ProveG(r1) (algorithm 
3).

Note that now, the cryptogram e is actually EncYenc (M, r0 + r1). Both the 
voter and the bulletin board know part of the randomizer value r0 + r1 (the 
voter knows r1 and the bulletin board knows r0) but neither of them knows the 
full value.

When submitting his vote, the voter sends both the cryptogram e = (R, C) 
and the proof of correct encryption PK. The bulletin board accepts the vote
cryptogram if the proof validates VerifyG(PK, R − R0) (algorithm 4). This 
proves that the voter did use the empty cryptogram e0 in the construction of the 
vote cryptogram e, thus ensuring that the voter does not know the randomness 
value of his cryptogram.

33



Voter Vj Bulletin Board B
/*knows xj ,M*/ /*knows Y = (Y1, ..., Ynv

)*/

/*generate empty cryptogram*/

r0 ∈R Zq
e0 = (R0, C0)← EncYenc

(O, r0)

send e0

/*B starts the protocol for proving to Vj
that e0 is an empty cryptogram.

protocol from figure 2*/

k ∈R Zq
KG ← [k]R0, KY ← [k]C0

send KG, KY

c ∈R Zq
send c

z ← k + c · r0 (mod q)

send z

[z]G
?
= KG + [c]R0

[z]Yenc
?
= KY + [c]C0

/*when Vj accepts the proof

protocol from figure 2 ends*/

/*proof of empty cryptogram*/

PK0 ← (KG,KY, c, z)

r1 ∈R Zq
e1 ← EncYenc(M, r1)

/*vote cryptogram*/

e← AddEnc(e0, e1)

/*proof of correct encryption*/

PK ← ProveG(r1)

Figure 8: Protocol for generating a vote cryptogram

34



3.3.3 Challenging a vote cryptogram

By challenging a vote cryptogram we are checking whether the voting application 
is honest or not. In other words, we check whether the voter’s browser is under 
control of an attacker who tries to cast a different vote than the voter’s option.

In order to challenge a vote cryptogram e, the browser asks the bulletin 
board B for the randomizer value r0 used to generate the empty cryptogram e0. 
Recall from previous section that the browser knows the value r1 used in the 
generation of e.

Next, following the Benaloh challenge paradigm [12], it will print on the 
screen (as a QR code or readable format) the vote cryptogram e = (R, C), 
the encryption key Yenc and the entire randomizer value r = r0 + r1. All this 
information must be transferred to another device that the voter trusts and 
that is able to perform the decryption algorithm. Next, the voter needs to 
verify that the information on the device is identical to the one from the voting 
application.

If the information matches, the trusted device can perform the decryption 
by extracting the vote M ← Decr(e

′) (algorithm 11), where e′ = (Yenc, C). 
Note that we apply the decryption algorithm on a modified cryptogram where 
value R and Yenc are swapped. That is done because we are trying to decrypt 
using the randomizer instead of the decryption key.

Next, the vote is interpreted as plain text m ← Point2String(M). If m 
corresponds to the voter’s choice, this proves that the voting application has 
behaved correctly in the vote encryption process. If there are any differences in 
the process described above, it means that the voting application has tried to 
cheat and is now caught.

We argue that, in case the voting application is corrupt and tries to cheat, the 
procedure of challenging a vote cryptogram will discover the cheating attempt 
with overwhelming probability.

Let’s say that the voting application uses the fake option m′ instead of m in 
the process of generating the vote cryptogram. That generates e′ = (R, C) ← 
AddEnc(e0, e1), where e1 ← EncYenc (M

′, r1) and M ′ ← String2Point(m′). 
Now, to cheat the trusted device that e′ is an encryption of m, it needs to print 
on the screen as the value of the randomizer r′ ← r0 + r1 − ∆m/xenc, where 
[∆m]G = M − M ′ and xenc is the decryption key.

In conclusion, for the voting application to cheat the trusted device, it 
needs not only the secret decryption key xenc but also, to break the Elliptic 
Curve Discreet Logarithm Problem in order to find ∆m, which we consider 
infeasible.

35



3.3.4 Lying about your vote

This section describes why a voter is not able to prove how she voted to a third 
party verifier, after she has finished the voting process.

Note that, the vote cryptogram e is actually equal to EncYenc (M, r0 +r1) out 
of which the voter does not know the value r0. Therefore, the voter would only 
be able to prove the way she voted based on the empty cryptogram e0 received 
from the server, but she cannot prove that e0 is indeed an empty cryptogram.

Instead, the voter is able to lie about her vote and generate fake evidence 
to support her claim. Based on the initial proof of empty cryptogram PK0,
the voter can lie about the cryptogram e = (R,C)← EncYenc

(M, r0 + r1) that
it is an encryption of message M ′ ∈ M , with M ′ 6= M by computing a fake
proof that will support her claim PK ′0 ← VoteLie(PK0,M,M ′) (algorithm
25). Note that the voter has received both e0 and PK0 in the protocol from
figure 8.

Algorithm 25: VoteLie(PK0,M,M ′)

Data: Proof of empty crypto PK0 = (KG,KY, c, z) ∈ E(Fp)2×Zq ×Zq
The original vote M ∈ E(Fp)
The fake vote M ′ ∈ E(Fp)

/* compute fake commitment */

K ′Y ← KY + [c](M ′ −M)
PK ′0 ← (KG,K

′
Y, c, z)

return PK ′0 // PK ′0 ∈ E(Fp)2 × Zq × Zq

The voter delivers the vote cryptogram e = (R,C), the fake empty cryp-
togram e′0 = (R0, C

′
0), where C ′0 = C0 +M −M ′, the fake proof of empty cryp-

togram PK ′0 and a proof of correct re-encryption PK ← ProveEqualityG,Yenc
(r1)

(algorithm 5). To be convinced that the cryptogram e contains vote M ′ a verifier
checks the proof of re-encryption VerifyEqualityG,Yenc

(PK,R−R0, C −C ′0 −
M ′). If it validates, the verifier checks the second proof of empty cryptogram
VerifyEqualityG,Yenc

(PK ′0, R0, C
′
0) (algorithm 6). If both proofs validate,

verifier is convinced about the fake evidence.
Therefore, because the voter is able to produce valid fake evidence about

the way she voted, a voter should not be trusted for proving the way she voted
regardless of the fact that she is honest or not.

36



3.3.5 Append-only Bulletin Board

All vote cryptograms received by the Bulletin Board are published on the list 
of vote cryptograms together with a signature of the voter and the board hash 
value. They are stored as an append only list, that means, no vote cryptograms 
are removed or replaced and each new vote cryptogram is appended at the end 
of the list. The structure of the Bulletin Board has been inspired from [13].

The process of submitting a vote to the Bulletin Board starts by the voter 
asking for the latest hash value of the board. The Bulletin Board returns the 
current hash value of the board ha,i and the current time stamp ta,i, which will 
be used as parameters in the generation of the vote submission. The entire 
process can be seen in figure 9.

Each time a new submission of a vote cryptogram (ei, hv,i, σi, PKi) is re-
ceived, the Bulletin Board validates the following:

• the vote submission is not too old, i.e. ta,i < tr,i < ta,i+ε, where tr,i is the
registration timestamp and ε is the latency parameter, which represents
the maximum time the vote submission process can take,

• the authenticity of the vote submission, i.e. σi is a valid, well-formatted
signature,

• the correctness of the vote cryptogram, i.e. validate that ei is constructed
based on the empty cryptogram e0,i by checking the proof of correct en-
cryption PKi.

If all validations succeed, the vote submission is registered (as the ith item on
the list) and a new board hash value is calculated hb,i = H(hv,i||hb,i−1||tr,i),
where ei is the vote cryptogram, hv,i is the vote’s content hash, σi is the voter’s
signature on the vote submission and tr,i is the registration time stamp.

It is visible that the board hash value is calculated based on the previous
board hash value in a blockchain like manner where each vote received is a block
in the chain. The first element of the bulletin board will compute its board hash
value by using as the previous board hash the value hb,0 = 0 (genesis hash).

The difference between the protocol described in paper [13] and our protocol
is that we accept multiple vote submissions coming at the same time, i.e. vote
submissions that have the same value for the acknowledged hash ha. This is an
unusual situation that can happen when two voters ”race” to submit their votes
and one of them has a slow internet connection while the other has a faster
one. The bulletin board accepts the second (losing) vote submission, even if
its acknowledged hash ha does not point to the previous item from the bulletin
board. The list aspect of the board is maintained by computing the hash value
of the board each time a new vote submission is registered.

Each bulletin board item contains the following information: the voter’s
id, the vote cryptogram, the acknowledged board hash and the acknowledged
timestamp, the voter’s signature, the registration timestamp and the new board
hash (the hash value of the board after this item has been appended).

37



Voter Vj Bulletin Board B
/*knows xj , PKi*/ /*knows xsign, ε,*/

/* ei = (Ri, Ci) */ /*e0,i = (R0,i, C0,i)*/

initialize process

/*get time stamp of acknowledged hash*/

ta,i ← current date time

ha,i ← current board hash value

send ha,i, ta,i

s← vID||eID||ei||ta,i||ha,i

hv,i ← H(s)

σi ← Signxj
(hv,i)

send σi, ei, hv,i, PKi

/*get registration time stamp*/

tr,i ← current date time

/*verify vote submission*/

s← vID||eID||ei||ta,i||ha,i

if hv,i
?
= H(s) and tr,i < ta,i + ε

and VerifySignatureYj
(σi, hv,i)

and VerifyG(PKi, Ri −R0,i)

– hb,i ← H(hv,i||hb,i−1||tr,i)
– ρi ← Signxsign

(σi||hb,i)

send ρi, tr,i
hb,i, hb,i−1

/*verify receipt*/

hb,i
?
= H(hv,i||hb,i−1||tr,i)

r ← σi||hb,i

VerifySignatureYsign
(ρi, r)

Figure 9: Protocol for submitting vote cryptograms

3.3.6 System events

Election configuration belongs also to the bulletin board. An election adminis-
trator is able to generate a special kind of bulletin board item, called a system 
event, that describes the election context. For example, such system events can 
define the following:

• election configuration that includes: the election signature verification key
Ysign, the encryption key Yenc, the election start and closing dates,

38



• ballot configuration that includes: the question of the election and all
candidate names (m1, ...,mnc

), where nc is the total number of candidates,

• voters configuration that includes: the list of eligible voters, each repre-
sented by an id and a signature verification key Yi, where i ∈ {1, ..., nv}
and nv is the total number of voters,

• threshold configuration that includes: the threshold limit t and the list
of all trustees, each represented by an id, a public key Yi and the list of
public polynomial coefficients Pi,k, where i ∈ {1, ...nt}, k ∈ {1, ..., t − 1}
and nt is the total number of trustees (recall from section 2.4.3).

The structure of a system event follows the structure of a vote submission. 
A system event has a registration time tr,i, a content hash hc,i and a signature 
σi ← Signxsign 

(hc,i) (algorithm 16), which certifies that the event has been 
generated by the bulletin board. Recall from section 3.2 that xsign is the bulletin 
board’s signing key. When the event has been appended on the bulletin board, 
a new board hash value is computed, by following the same strategy: hb,i = 
H(hc,i||hb,i−1||tr,i), where hb,i−1 is the previous board hash value.

The election process starts by having the election context locked down on 
the bulletin board in form of system events: an election configuration, a ballot 
configuration, a voters configuration and a threshold configuration events. If any 
change happens to the election context during the election process, a system 
event that describes the change is generated and appended on the board. That 
change will be effective in the election process from that moment on.

3.3.7 Vote Confirmation Receipt

Once the vote cryptogram ei has been registered, the voter receives back from the 
bulletin board a confirmation receipt in form of a Schnorr signature (al-
gorithm 16) ρi = Signxsign 

(σi||hb,i), together with the new board hash value 
hb,i, the previous board hash value hb,i−1 and the registration time stamp tr,i. 
Recall from section 3.2 that xsign is the bulletin board’s signing key.

The receipt certifies that the vote cryptogram has been registered on the 
bulletin board at exactly version hb,i. The voter can use this receipt to verify, 
at any time, that her vote is included on the board, and that the history of the 
board has not changed by validating the hash value.

If the previous board hash value hb,i−1 does not match with the acknowl-
edged hash ha,i, that means a ”race” situation (described in the previous section) 
has happened and the current voter has lost the race, i.e. while the current voter 
was preparing her vote submission, another voter has successfully managed to 
post another vote submission. This is a perfectly valid scenario that can occur 
in busy situations.

Note that, if a voter has a confirmation receipt that does not correspond with 
the current state of the bulletin board, that immediately reveals an attempt to 
break the integrity of the bulletin board and should be reported to the election 
authorities.

39



3.4 Post-election Phase
After the voting time has finished, the election proceeds to the last phase which 
will generate the result of the election. Now, the bulletin board B does not 
accept any new vote cryptograms anymore. The list of votes remains publicly 
available for voters to check that their vote cryptogram is included (using their 
confirmation receipt) and for auditors to check that the hash values of the list 
are consistent (the integrity of the board is persistent).

In this chapter we will present all the steps that take place in the post-
election phase.

3.4.1 Cleansing Procedure

The bulletin board B will create a different list that contains only the cryp-
tograms of the valid cryptograms from the bulletin board. A valid cryptogram 
is a vote cryptogram item on the bulletin board that has a valid signature and 
that has not been overwritten by a latter vote cryptogram generated by the 
same voter.

The new list of cryptograms is called the initial mixed board and is saved in 
a file. This file will be used as the input to the mixing phase.

The cleansing procedure is publicly auditable as both the list of vote cryp-
tograms and the initial mixed board are publicly available.

3.4.2 Mixing Phase

During the mixing phase, the list of cryptograms will change its appearance 
several times, being shuffled in an indistinguishable way. Each mixer from the 
mixnet Mi ∈ M applies its mixing algorithm in sequential order (the output of 
Mi−1 will be used as input for Mi). The first mixer M1 applies its algorithm 
on the initial mixed board and the output of the last mixer Mnm is used as the 
final mixed board.

Obviously, each mixer Mi knows the shuffling coefficients of its own mixing 
algorithm and it is able to link the votes on the mixed board at step i −1 (input 
board) with the ones on the mixing board at step i (output board). However, 
Mi does not know the shuffling coefficients of the other mixers algorithms so 
it cannot create a full link between the votes on the final mixed board and the 
ones on the initial mixed board, unless all mixers are corrupt and collude against 
the election. It is important this full link to be unknown because the votes on 
the initial mixed board can be associated with an identity (through its digital 
signature).

Thus, on the assumption that at least one mixer is honest, during the mixing 
phase the link between a vote on the final mixed board and its owner (voter) is 
broken. Therefore, mixing phase preserves anonymity.

Each mixer Mi ∈ M asks the bulletin board B for the latest version of the 
mixed board. The bulletin board B will grant permission to one mixer at a time. 
When Mi is granted permission, it receives the mixed board ei−1. Next, Mi 
follows the mixing procedure to compute the new mixed board by randomly

40



permuting the entire list of cryptograms and re-encrypting each cryptogram
from the permuted list with distinct randomnizers. Finally, Mi computes a
proof of correct mixing in form of Furukawa’s Proof of Shuffle (ei, PK) ←
MixingProcedureYenc

(ei−1) described in algorithm 26.
We recall from section 2.6 that the algorithm used for proving a shuffle

has the soundness property on the assumption that the prover is not in the
possession of the randomizers used in the generation of each cryptogram. We
consider this assumption sane as the cryptograms are generated in collaboration
between the bulletin board and each voter (figure 8). By following this protocol,
we ensure that there is no single entity that knows the randomizer value behind
any cryptogram.

Algorithm 26: MixingProcedureYenc
(ei−1)

Data: The input mixed board ei−1 ∈ En
r ∈R Znq
ψ ∈R Ψn

/* compute new mixed board */

ei ← ShuffleYenc
(ei−1, r, ψ) // algorithm 18

/* compute shuffle proof */

PK ← ProveShuffleYenc
(ei−1, r, ψ) // algorithm 23

return (ei, PK) // (ei, PK) ∈ En × (E(Fp)8+4·n × Znq × Z2+n
q )

Note that, while one mixer applies its mixing algorithm on a mixing board, 
the other mixers have to wait until the new mixing board has been approved.

Once the mixing procedure has finished, both the mixed board ei and the 
mixing proof PK are saved in separate files. The mixer uploads both files to 
the bulletin board which checks the validity of the proof by running the algo-
rithm VerifyShuffleYenc 

(PK, ei−1, ei) (algorithm 24). If the proof validates, 
the bulletin board B accepts ei as the new version of the mixed board.

When all mixers have applied their mixing procedures, the final mixed board 
is used in the decryption phase to compute the election results.

3.4.3 Decryption Phase

Because the link between a vote cryptogram and its voter has been broken during 
the mixing phase, it is safe now to decrypt all the cryptograms from the final 
mixed board as it does not violate the secrecy of the election. Furthermore, 
decrypting the final mixed board would lead to accurate and correct results as 
it contains the exact same votes as the initial bulletin board, fact proven by the 
mixing proofs.

During the decryption phase, trustees have to collaborate again. This time, 
only a threshold of trustees are sufficient to decrypt the votes. The threshold 
value t is the one set during the threshold ceremony. Recall that each trustee 
Ti ∈ T is in possession of a share of the election decryption key sxi.

41



Assuming that the subset of trustees T ⊂ T participate in the decryption
phase, with the cardinality of T being nd ≥ t. Each trustee Ti ∈ T downloads
from the bulletin board B the final mixed board e = (e1, ..., ene) and computes
partial decryptions of every single cryptogram by following the algorithm Si =
(Si,1, ..., Si,ne

)← PartialDecryptionsxi
(e) (algorithm 27).

Algorithm 27: PartialDecryptionsxi
(e)

Data: The share of decryption key sxi ∈ Zq
The board of cryptograms e = (e1, ..., ene

) ∈ Ene)
ej = (Rj , Cj), j ∈ {1, ..., ne}

for j ← 1 to ne by 1 do
Si,j ← [sxi]Rj

end
Si ← (Si,1, ..., Si,ne)
return Si // Si ∈ E(Fp)ne

After computing partial decryptions, trustee Ti generates a proof of cor-
rect decryption in form of a non-interactive Proof for Multiple Discrete Log-
arithms (section 2.2.3) PKi ← ProveMultipleG,R1,...,Rne

(sxi) (algorithm 7).
The trustee sends to the bulletin board both the partial decryptions Si to-
gether with the proof of correct decryption PKi. The bulletin board B accepts
the partial decryption Si if the proof of correct decryption validates according
to the algorithm VerifyMultipleG,R1,...,Rne

(PKi, sYi, Si,1, ..., Si,ne
) (algorithm

8). Recall from section 2.4.3 that trustee’s public share of the decryption key
sYi is publicly available.

Upon receiving all partial decryptions (S1, ...,Snd) from all trustees in T ,
the bulletin board B aggregates all partial decryptions for each cryptogram
ej ∈ e to finalize the decryption and extract the votes V = (V1, ..., Vne

). The
procedure for aggregating all partial decryptions is described in the algorithm
V ← FinalizeDecryption(e,S1, ...,Snd) (algorithm 28).

Algorithm 28: FinalizeDecryption(e,S1, ...,Snd)

Data: The board of cryptograms e = (e1, ..., ene
) ∈ Ene

ej = (Rj , Cj), j ∈ {1, ..., ne}
The partial decryptions Si = (Si,1, ..., Si,ne) ∈ E(Fp)ne , i ∈ T

for j ← 1 to ne by 1 do
Vj ← Cj −

∑
i∈T [λ(i)]Si,j // λ(i) computed as in figure 5

end
V ← (V1, ..., Vne

)
return V // V ∈ E(Fp)ne

At the end of the decryption phase we will be in possession of the raw result
of the election, i.e. the full list of votes in plain text (decrypted form).

42



3.4.4 Result Publication

The results module is responsible for interpreting the raw result and present the 
result of the election in a more readable way. The interpretation of the result is 
dependant on the election type (simple election, multiple election, STV, etc.).

For simplicity, we will consider the simple election case, where voters had to 
choose one option from a predefined set of candidates.

The bulletin board B verifies every single vote from the list of raw results 
Vi ∈ V and if it matches one of the vote options Vi ∈ M the vote counter for 
that particular candidate is incremented. If a vote from the list of raw results 
does not correspond to any of the vote options Vi 6∈ M , that represents an 
invalid vote and the counter of invalid votes is incremented.

Results will be published as a list of candidates next to the amount of votes 
they received, in decending order of the vote counter.

43



4 Auditing process
This section describes the entire auditing process of an election, i.e. all the 
verification mechanisms, who conducts them and what cryptographic algorithms 
they are made of. These verification mechanisms can be split into two categories:

• individually verifiable

• publicly verifiable

Individual verification mechanisms are targeted to one single person and
allows him to verify one single piece of information. This type of verification
mechanism is used only when the piece of information in question is relevant only
to that single individual, for example, a voter verifies that his voting application
behaves correctly.

Public verification mechanisms are accessible to anybody. They are used
to validate that the entire election process behaves correctly. This kind of
mechanisms is typically run by certified auditors that will validate or invalidate
an election result. Nevertheless, they could be run by any public person that
has access to the right verification algorithms.

The system provides verification mechanisms of the following aspects:

• vote is cast as intended

• vote is registered as cast

• votes are counted as registered

– mixing procedure

– decryption

• eligibility of the registered votes

• integrity of the bulletin board

4.1 Individual verification mechanisms
During the voting process, the voter is able to verify two aspects of his own 
vote: it is cast as intended and it is registered as cast.

4.1.1 Vote is cast as intended

In order to verify that the vote is cast as intended, the voter needs to verify that 
the encryption mechanism of the voting application behaved correctly, i.e. the 
cryptogram contains the correct vote. After generating the vote cryptogram, 
the voter can choose whether to submit his vote or to challenge the encryption 
process. If the voter chooses to challenge the vote cryptogram, the system will 
print on the screen the value of the cryptogram e = (R, C), the encryption key 
Yenc, and the randomizer r used in the encryption. Note that r = r0 + r1,

44



where r0 is the randomizer generated by the server and r1 is generated by the 
voting application. That means the server has to collaborate in this process for 
providing r0.

Now the voter can use a secondary device to decrypt the content of the 
cryptogram by applying M ← Decr(e

′) (algorithm 11), where e′ = (Yenc, C). 
If the vote M corresponds to the correct value that the voter intended to cast, 
then the voter gains confidence that the voting application behaves correctly.

If the voter chooses to challenge the vote cryptogram, then the cryptogram 
is invalidated because the value r0 has been exposed. After challenging the 
vote cryptogram, the voter has to recast his vote by generating another vote 
cryptogram, which again, he has the option to challenge or submit.

4.1.2 Vote is registered as cast

After posting a vote submission (vote cryptogram e and the voter signature σ), 
the voter receives a receipt ρ that certifies that his vote submission has been 
registered on the bulletin board at position hb. The receipt can be validated by
checking VerifySignatureYsig 

(ρ, σ||hb) (algorithm 17).
Anytime during the election, the voter can check his receipt against the 

bulletin board, which responds with the appropriate vote submission, thus the 
voter gains confidence that his vote is registered as cast.

4.2 Public auditing process
During the voting process, any public auditor is able to verify the eligibility of 
the registered votes (i.e. all vote submissions were generated by a genuine voter) 
and the integrity of the bulletin board (i.e. no registered vote submissions have 
been removed or tampered with).

After the voting phase has finished and the integrity of the election has 
been confirmed, the bulletin board goes through the cleansing procedure, where 
some of the vote submissions are filtered out based on some public rules. For 
each of the remaining vote submissions, the system will consider only its vote 
cryptogram which will be passed to the following counting process. The rules 
of the cleansing procedure are the following:

• only vote submissions with valid digital signatures are considered

• for each voter, only his last vote submission is considered

• if a voter has been removed, all his vote submissions are disregarded

During the counting process, any public auditor is able to verify that the
result is counted based on the registered votes. This verification process is
made out of two parts: verification of the mixing procedure (i.e. confirm that
vote cryptograms have not been tampered with during the mixing phase) and
verification of the decryption process (i.e. confirm that all trustees correctly
decrypted the vote cryptograms).

45



All public auditing processes are based on the data provided by the public
bulletin board, which includes:

• all registered vote submissions, each represented by the following data:
the voter id i, the vote cryptogram e, the acknowledged hash ha, the
acknowledged time stamp ta, the voter digital signature σ, the board hash
hb and the registration time stamp tr

• all the election configuration, including the election id eID, the election
encryption key Yenc and signature verification key Ysig and the signature
verification keys of all eligible voters Yi, with i ∈ {1, ..., nv}, where nv is
the total number of voters

• all the data regarding the threshold ceremony, including the threshold
limit t, the public keys of all trustees Yj and the public threshold coeffi-
cients Pj,k, where j ∈ {1, ..., nt} and k ∈ {1, ..., t− 1}

4.2.1 Eligibility verifiability

Any public auditor is able to validate the digital signature of each vote sub-
mission. A valid digital signature confirms that the vote submission has been 
genuinely generated by an eligible voter. The signature validation algorithm is
VerifySignatureYi 

(σ, hv) (algorithm 17), where hv = H(i||eID||e||ta||ha).
Note that through his digital signature, the voter also certifies the history 

of the bulletin board (i.e. at time ta the bulletin board had its hash value ha).

4.2.2 Integrity of the bulletin board

Any public auditor is able to validate the integrity of the bulletin board by 
checking that the board hash of each item on the board is computed based 
on the previous board hash, in a blockchain manner. The calculation below 
include an extra index j to specify the order of the entries from the bulletin 
board. To validate the integrity of the board, for each j ∈ {1, ..., nb}, where nb 
is the total number of items on the bulletin board, the following has to match: 
hb,j = H(hv,j ||hb,j−1||tr,j ).

Note that each board hash hb,j is computed based on its previous board 
hash hb,j−1. The value of the initial board hash is hb,0 = 0.

4.2.3 Verification of the cleansing procedure

Any public auditor is able to verify the cleansing procedure as both the bulletin 
board file and the cleansed list of vote cryptograms are publicly available. The 
auditor has to apply the cleansing rules on the bulletin board and verify that 
the output is identical with the list of vote cryptograms.

46



4.2.4 Verification of mixing procedure

During and after the mixing phase, any public auditor is able to verify the mixing 
procedure of each mix node Mi, with i ∈ {1, ..., nm}, where nm is
the total number of mix nodes, by applying VerifyShuffleYenc 

(PKi, ei−1, ei)
(algorithm 24), where PKi is the proof of correct mixing, ei is the mixed board 
of cryptograms and ei−1 is the previous mixed board of cryptograms.

Note that e0 = {e1, ..., encb } is the initial, cleansed board of vote cryp-
tograms as registered by the voters, where ncb is the total number of cleansed 
cryptograms.

4.2.5 Verification of the decryption

During and after the decryption phase, any public auditor is able to verify each 
partial decryption Si = {Si,1, ..., Si,ncb } computed by the trustee Ti, with i ∈ 
{1, ..., nt}, where nt is the total number of trustees.

Note that each trustee applies his partial decryption on the final mixed board 
of cryptograms enm = {e1, ..., encb } (the board outputted by the last mix node), 
with each ej = (Rj , Cj ), where j ∈ {1, ..., ncb}.

To validate a partial decryption, the auditor has to run the verification
procedure VerifyMultipleG,R1,...,Rncb

(PKi, sYi, Si,1, ..., Si,ncb
) (algorithm 8),

where PKi is the proof of correct decryption and sYi is the trustee’s public
share of the decryption key. Note that sYi is publicly computable as described
in section 2.4.3.

To validate the aggregation of all partial decryptions (S1, ...,Snd), where nd

is the total number of trustees that participate in the decryption phase, any pub-
lic auditor can run the algorithm V ← FinalizeDecryption(enm ,S1, ...,Snd)
(algorithm 28) that will output V = {V1, ..., Vncb

}, the raw result of the election
(i.e. the list of decrypted votes). The auditor has to compare V with the list
of votes published by the system, which should be identical.

Counting the votes and sorting the candidates based on their vote count is
trivial.

47



5 Election properties
In this section, we describe what security properties our election system has. 
We also describe what each of these properties means and under what context 
the are reached.

5.1 Mobility
The voter can use any device (PC, laptop, tablet, smart phone), that he has and 
he trusts, to connect to the election system. The voter does not need to be in 
a special location (e.g. polling station) in order to vote. Instead, the voter can 
participate in the voting process being located in any place, that he considers 
secure and private, and that has an internet connection.

We claim mobility as a property of Assembly Voting X.

5.2 Eligibility
Eligibility is defined as the fact that only a limited number of predefined voters 
are allowed to cast a valid vote.

During the pre-election phase (section 3.2), the election administrators define 
the list of eligible voters V = (V1, ..., Vnv ), where nv is the total number of 
voters, and the list of printing authorities P = (P1, ..., Pnp ), where np is the 
total number of printing authorities.

During the voter credential distribution process (section 3.2.1), all printing 
authorities assign a distinct public signature verification key Yi to each voter 
Vi. At the same time, each printing authority Pj ∈ P distributes to each voter
their voting credentials xi,j , with i ∈ {1, ..., nv} and j ∈ {1, ..., np} such that
[
∑np

j=1 xi,j ]G = Yi. After receiving all his election credentials xi,j , voter Vi can

compute his private signing key xi =
∑np

j=1 xi,j .
When submitting a vote, the voter Vi digitally signs the vote submission with

his private signing key xi and the election system accepts the vote submission
only if the digital signature matches the voter’s public signature verification
key Yi. By following this process, we make sure that the vote submission was
generated by somebody in possession of xi, which could only be the voter.

One can notice that the printing authority Pj knows a part of the signing
key of voter Vi but not enough. Therefore, we argue that Assembly Voting X
has the eligibility property on the assumption that there exist multiple printing
authorities that do not communicate with each other during the election process.

48



5.3 Privacy
By the term privacy of the election we understand that nobody is able to read any 
votes or any part of the result unless it is supposed to, i.e. it is specified in the 
election protocol.

By following the election protocol, it is guaranteed that:

• the secrecy of the vote is preserved. No votes from the public bulletin
board are decrypted, therefore no connection between a vote and a voter
can be made.

• no partial results are computed during the election process. A result is
calculated only once, after the election phase has finished.

All votes, that are posted on the public bulletin board, are encrypted using 
the ElGamal cryptosystem based on elliptic curve cryptography (more details in 
sections 2.1 and 2.4). Moreover, using a t out of n threshold encryption scheme 
(section 2.4.3), we enforce that there is no single entity that can perform the 
decryption of any data from the public bulletin board, but instead, it is needed 
a group of minimum t trustees to collaborate.

Therefore, we claim that Assembly Voting X has the privacy property on the 
assumption that at least t trustees are honest, with t > n/2 and n > 2.

One can argue that, because the bulletin board data is public, somebody 
could save all the data for long enough until the elliptic curve cryptosystem will 
be broken, and so will be able to decrypt all the data contrarily to our protocol. 
This fact demonstrates that our system does not comply to the everlasting 
privacy property. We take note of this fact and we accept it.

5.4 Anonymity
The anonymity property implies the fact that nobody knows the connection 
between a voter identity and its decrypted vote from the final raw result list 
of votes. This property is reached by implementing a mixnet of mixers that 
sequentially shuffle the list of vote cryptograms in an indistinguishable way, 
before they get decrypted (section 3.4.2).

Obviously, each mixer knows the way it shuffled the list of cryptograms but 
it does not know how it was shuffled by the other mixers. Thus, it is important 
that mixers do not communicate with each other.

We claim that Assembly Voting X is an anonymous voting system on the 
assumption that there is a mixnet of multiple mixers out of which at least one 
is honest.

49



5.5 Integrity
We define the integrity of an election as the property that all data recorded 
during the election is never modified or deleted.

The integrity of the election is preserved in our system by publishing all 
events (vote submissions or system events) on the bulletin board. Moreover, the 
bulletin board has a blockchain-like structure that guarantees that the history 
of the bulletin board never changes. Also, the voters act like miners of the 
blockchain whenever they submit a new vote cryptogram, by signing on the 
history of the blockchain.

Every time a new vote submission is appended on the bulletin board, the 
voter receives a vote receipt ρi that contains a pointer to the item on the bulletin 
board, called the board hash value hb,i. This value is computed based on the 
previous board hash value hb,i−1, which is computed based on the one before, and 
so on, until it reaches the genesis hash, which is 0. This means that every time 
a voter checks his voter receipt, the entire bulletin board history is validated.

We claim that Assembly Voting X achieves the integrity property through 
the public bulletin board construction.

5.6 Verifiability
All steps of the election protocol are verifiable (more details in section 4). There 
are two levels of verifiability that can be performed by different actors. Some 
steps are individually verifiable (i.e. only the voter that is currently performing 
this step can verify that the process is happening correctly), such as:

• verify that the vote is cast as intended

• verify that the vote is registered as cast

The rest of the steps from the election protocol are publicly verifiable:

• the threshold ceremony

• the public bulletin board history

• the integrity and eligibility of each vote submission

• the integrity of each system event

• the correctness of the cleansing procedure, mixing phase and decryption
phase (verification that votes are counted as registered)

We claim that Assembly Voting X is a verifiable election system.

50



5.7 Receipt-freeness
We define the receipt-free property as the fact that a voter is not able to prove to 
a third party the way he voted, after he submitted his vote cryptogram.

During the vote cryptogram generation process (section 3.3.2), the voter re-
ceives from the bulletin board an empty cryptogram e0 that he uses to generate 
his final vote cryptogram e in order to encrypt his vote M . At the end of the 
process, the vote cryptogram e would be equal to EncYenc (M, r0 + r1), where 
r0 is known by the bulletin board and r1 is known by the voter. The voter is 
convinced that e0 is an empty cryptogram because of a interactive proof PK0 
generated between the voter and the bulletin board.

The empty cryptogram e0 and the proof PK0 are relevant only for the com-
munication amongst the voter and the bulletin board, to make sure that none 
of them has the entire randomness value r0 + r1 that is used to generate the 
cryptogram e. Therefore, e0 and PK0 are not included on the public bulletin 
board, thus not publicly available.

After the vote cryptogram e has been accepted on the board, the voter is 
not able to produce valid cryptographic evidence that e is an encryption of M 
referencing only the data that is publicly available. More details are described 
in section 3.3.4.

Therefore, we claim that Assembly Voting X is a receipt-free voting protocol.

51



References
[1] René Schoof. Elliptic curves over finite fields and the computation of square

roots mod p. Mathematics of Computation, 44(170):483–494, 1985.

[2] Wade Trappe and Lawrence C. Washington. Introduction to Cryptography
with Coding Theory (2Nd Edition). Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 2005.

[3] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In Andrew M. Odlyzko, editor, Ad-
vances in Cryptology — CRYPTO’ 86, pages 186–194, Berlin, Heidelberg,
1987. Springer Berlin Heidelberg.

[4] Sherman S. M. Chow, Changshe Ma, and Jian Weng. Zero-knowledge argu-
ment for simultaneous discrete logarithms. In My T. Thai and Sartaj Sahni,
editors, Computing and Combinatorics, pages 520–529, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

[5] Torben Pryds Pedersen. A threshold cryptosystem without a trusted party.
In Donald W. Davies, editor, Advances in Cryptology — EUROCRYPT ’91,
pages 522–526, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.

[6] Yvo G. Desmedt and Yair Frankel. Threshold cryptosystems. In Proceedings
on Advances in Cryptology, CRYPTO ’89, pages 307–315, New York, NY,
USA, 1989. Springer-Verlag New York, Inc.

[7] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
November 1979.

[8] C. P. Schnorr. Efficient identification and signatures for smart cards. In
Gilles Brassard, editor, Advances in Cryptology — CRYPTO’ 89 Proceed-
ings, pages 239–252, New York, NY, 1990. Springer New York.

[9] Jun Furukawa and Kazue Sako. An efficient scheme for proving a shuffle.
In Joe Kilian, editor, Advances in Cryptology — CRYPTO 2001, pages
368–387, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[10] Jun Furukawa, Hiroshi Miyauchi, Kengo Mori, Satoshi Obana, and Kazue
Sako. An implementation of a universally verifiable electronic voting scheme
based on shuffling. In Matt Blaze, editor, Financial Cryptography, pages
16–30, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[11] Jun Furukawa. Efficient, verifiable shuffle decryption and its requirement
of unlinkability. In Feng Bao, Robert Deng, and Jianying Zhou, editors,
Public Key Cryptography – PKC 2004, pages 319–332, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

52



[12] Josh Benaloh. Simple verifiable elections. In Proceedings of the
USENIX/Accurate Electronic Voting Technology Workshop 2006 on Elec-
tronic Voting Technology Workshop, EVT’06, pages 5–5, Berkeley, CA,
USA, 2006. USENIX Association.

[13] James Heather and David Lundin. The append-only web bulletin board. In
Pierpaolo Degano, Joshua Guttman, and Fabio Martinelli, editors, Formal
Aspects in Security and Trust, pages 242–256, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

53



A Proof of Shuffle

A.1 Variable mapping
The following table presents how the variable names are mapped between the 
main protocol of [9] and our protocol described in section 2.6.

Original paper Our protocol Comments
p p is not visible in the algorithm as it is

inferred in the elliptic curve operations
q q the curve order
g G the curve generator
y Y the encryption key

(gi,mi) ei = (Ri, Ci) the original list of cryptograms
(g′i,m

′
i) e′i = (R′i, C

′
i) the mixed list of cryptograms

σ σ
ρ ρ
τ τ
α a
αi αi
λ λ
λi λi
t T
v V
w W
u U
ui Ui
g′ R′

m′ C ′

ṫi Ṫi
v̇i V̇i
v̇ V̇

ẇi Ẇi

ẇ Ẇ
ci ci the challenges
s z
si si
λ′ λ′

54


	AVX_technical_documentation
	Assembly Voting X technical documentation.pdf



